1
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
In the three dimensional view of a silicon n-channel MOS transistor shown below, $$\delta = 20$$ nm. The transistor is of width 1 $$\mu m$$. The depletion width formed at every p-n junction is 10 nm. The relative permittivities of Si and SiO2, respectively, are 11.7 and 3.9, and $${\varepsilon _0}$$ = 8.9 $$ \times {10^{ - 12}}$$ F/m.
The source-body junction capacitance is approximately
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The source of a silicon (ni = 1010 per cm3) n - channel MOS transistor has an aewa of 1 sq $$\mu m$$ and a depth of 1 $$\mu m$$ . If the dopant density in the source is 1019/cm3, the number of holes in the source region with the above volume is approximately
3
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
In the CMOS circuit shown, electron and hole mobilities are equal, and M1 and M2 are equally sized. The device M1 is in the linear region if
4
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the CMOS circuit shown, where the gate voltage of the n-MOSFET is increased
from zero, while the gate voltage of the p-MOSFET is kept constant at 3 V. Assume that, for
both transistors, the magnitude of the threshold voltage is 1 V and the product of the
transconductance parameter and the $$\left(\frac WL\right)$$ ratio, i.e. the quantity $$\mu C_{ox}\left(\frac WL\right)$$ , is 1 mAV-2.
Estimate the output voltage V0 for VG =1.5 V. [Hints: Use the appropriate current-voltage equation for each MOSFET, based on the answer]
Estimate the output voltage V0 for VG =1.5 V. [Hints: Use the appropriate current-voltage equation for each MOSFET, based on the answer]
Questions Asked from IC Basics and MOSFET (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (3)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (2)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (4)
GATE ECE 2009 (2)
GATE ECE 2008 (3)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude