1
GATE ECE 2014 Set 1
Numerical
+2
-0
A depletion type N -channel MOSFET is biased in its linear region for use as a voltage controlled resistor. Assume threshold voltage VTH = -0.5 V, VGS = 2.0 V, VDS = 5 V, W/L=100, COX=10-8 F/cm2 and $${\mu _n}$$ = 800 cm2/V-s. The value of the resistance of the voltage controlled resistor (in $$\Omega $$ ) is _____.
Your input ____
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The small-signal resistance (i.e., $${{d{V_B}} \over {d{I_D}}}$$ ) in $$k\Omega $$ offered by the n-channel MOSFET M shown in the figure below, at bias point of VB = 2V is (device data for M: device transconductance parameter
kN = $${\mu _n}{C_{ox}^{'}}$$ (W/L)= 40$$\mu {\rm A}/{V^2},$$ threshold voltage VTN=1V, and neglect body effect and channel length modulation effects)
3
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
In the three dimensional view of a silicon n-channel MOS transistor shown below, $$\delta = 20$$ nm. The transistor is of width 1 $$\mu m$$. The depletion width formed at every p-n junction is 10 nm. The relative permittivities of Si and SiO2, respectively, are 11.7 and 3.9, and $${\varepsilon _0}$$ = 8.9 $$ \times {10^{ - 12}}$$ F/m.
The gate-source overlap capacitance is approximately
4
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
In the three dimensional view of a silicon n-channel MOS transistor shown below, $$\delta = 20$$ nm. The transistor is of width 1 $$\mu m$$. The depletion width formed at every p-n junction is 10 nm. The relative permittivities of Si and SiO2, respectively, are 11.7 and 3.9, and $${\varepsilon _0}$$ = 8.9 $$ \times {10^{ - 12}}$$ F/m.
The source-body junction capacitance is approximately
Questions Asked from IC Basics and MOSFET (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (3)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (2)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (4)
GATE ECE 2009 (2)
GATE ECE 2008 (3)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics