1

GATE ECE 2009

MCQ (Single Correct Answer)

+2

-0.6

Consider the CMOS circuit shown, where the gate voltage of the n-MOSFET is increased
from zero, while the gate voltage of the p-MOSFET is kept constant at 3 V. Assume that, for
both transistors, the magnitude of the threshold voltage is 1 V and the product of the
transconductance parameter and the $$\left(\frac WL\right)$$ ratio, i.e. the quantity $$\mu C_{ox}\left(\frac WL\right)$$ , is 1 mAV

For small increase in V

^{-2}.For small increase in V

_{G}beyond 1 V, which of the following gives the correct description of the region of operation of each MOSFET?2

GATE ECE 2009

MCQ (Single Correct Answer)

+2

-0.6

Consider the CMOS circuit shown, where the gate voltage of the n-MOSFET is increased
from zero, while the gate voltage of the p-MOSFET is kept constant at 3 V. Assume that, for
both transistors, the magnitude of the threshold voltage is 1 V and the product of the
transconductance parameter and the $$\left(\frac WL\right)$$ ratio, i.e. the quantity $$\mu C_{ox}\left(\frac WL\right)$$ , is 1 mAV

Estimate the output voltage V

^{-2}.Estimate the output voltage V

_{0}for V_{G}=1.5 V. [Hints: Use the appropriate current-voltage equation for each MOSFET, based on the answer]3

GATE ECE 2008

MCQ (Single Correct Answer)

+2

-0.6

Two identical NMOS transistors M

_{1}and M_{2}are connected as shown below. V_{bias}is chosen so that both transistors are in saturation. The equivalent g_{m}of the pair is defined to be $$\frac{\partial I_{out}}{\partial v_i}$$ at constant V_{out}. The equivalent g_{m}of the pair is4

GATE ECE 2008

MCQ (Single Correct Answer)

+2

-0.6

For the circuit shown in the following figure, transistors M1 and M2 are identical
NMOS transistors. Assume that M2 is in saturation and the output is unloaded
The current I

_{x}is related to I_{bias}asQuestions Asked from IC Basics and MOSFET (Marks 2)

Number in Brackets after Paper Indicates No. of Questions

GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 3 (3)
GATE ECE 2016 Set 1 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 3 (2)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (4)
GATE ECE 2009 (2)
GATE ECE 2008 (3)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2004 (1)
GATE ECE 2003 (3)

GATE ECE Subjects

Network Theory

Control Systems

Electronic Devices and VLSI

Analog Circuits

Digital Circuits

Microprocessors

Signals and Systems

Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform

Communications

Electromagnetics

General Aptitude