1
GATE ECE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A voltage VG is applied across a MOS capacitor with metal gate and p-type silicon substrate at
T=300 K. The inversion carrier density (in number of carriers per unit area) for VG = 0.8 V is $$2\,\, \times \,\,{10^{11}}\,\,\,\,\,\,c{m^{ - 2}}$$ . For $${V_G}\,\, = \,\,1.3\,\,V,$$ the inversion carrier density is $$4\,\,\, \times \,\,\,{10^{11}}\,\,\,\,c{m^{ - 2}}.$$ What is the value of the inversion carrier density for VG = 1.8 V?
2
GATE ECE 2016 Set 1
Numerical
+2
-0
Consider an n-channel metal oxide semiconductor field effect transistor (MOSFET) with a gate-to-source
voltage of 1.8 V. Assume that $${W \over L} = 4,{\mu _{\rm N}}{C_{ox}} = 70 \times {10^{ - 6}}{\rm A}{V^{ - 2}}$$ , the threshold voltage is 0.3V, and the channel length modulation parameter is 0.09 V-1, In the saturation region, the drain conductance (in micro siemens) is__________.
Your input ____
3
GATE ECE 2016 Set 3
Numerical
+2
-0
Figures $${\rm I}$$ and $${\rm I}{\rm I}$$ show two MOS capacitor of unit area. The capacitor in Figure I has insulator materials X (of thickness t1 = 1 nm and dielectric constant $${\varepsilon _1}$$ = 4) and Y (of thickness t2 =3 nm and dielectric constant $${\varepsilon _2}$$ = 200). The capacitor in Figure $${\rm I}{\rm I}$$ has only insulator material X of thickness teq. If the capacitors are of equal capacitance, then the value of teq (in nm) is ______
Your input ____
4
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
In the circuit shown in the figure, the channel length modulation of all transistors is non-zero $$\left( {\lambda \ne 0} \right)$$. Also all transistors operate in saturation and have negligible body effect. The ac small
signal voltage gain $$\left( {{V_0}/{V_{in}}} \right)$$ of the circuit is
Questions Asked from IC Basics and MOSFET (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2016 Set 2 (2)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (3)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (2)
GATE ECE 2014 Set 3 (3)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (4)
GATE ECE 2009 (2)
GATE ECE 2008 (3)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude