1
GATE ECE 2016 Set 3
Numerical
+2
-0
Figures $${\rm I}$$ and $${\rm I}{\rm I}$$ show two MOS capacitor of unit area. The capacitor in Figure I has insulator materials X (of thickness t1 = 1 nm and dielectric constant $${\varepsilon _1}$$ = 4) and Y (of thickness t2 =3 nm and dielectric constant $${\varepsilon _2}$$ = 200). The capacitor in Figure $${\rm I}{\rm I}$$ has only insulator material X of thickness teq. If the capacitors are of equal capacitance, then the value of teq (in nm) is ______ GATE ECE 2016 Set 3 Electronic Devices and VLSI - IC Basics and MOSFET Question 10 English 1 GATE ECE 2016 Set 3 Electronic Devices and VLSI - IC Basics and MOSFET Question 10 English 2
Your input ____
2
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
In the circuit shown in the figure, the channel length modulation of all transistors is non-zero $$\left( {\lambda \ne 0} \right)$$. Also all transistors operate in saturation and have negligible body effect. The ac small signal voltage gain $$\left( {{V_0}/{V_{in}}} \right)$$ of the circuit is GATE ECE 2016 Set 3 Electronic Devices and VLSI - IC Basics and MOSFET Question 9 English
A
$$ - {g_{m1}}\left( {{r_{01}}//{r_{02}}//{r_{03}}} \right)$$
B
$$ - {g_{m1}}\left( {{r_{01}}//{1 \over {{g_{m3}}}}//{r_{03}}} \right)$$
C
$$ - {g_{m1}}\left( {{r_{01}}//\left( {{1 \over {{g_{m2}}}}//\,{r_{02}}} \right)//{r_{03}}} \right)$$
D
$$ - {g_{m1}}\left( {{r_{01}}//\left( {{1 \over {{g_{m3}}}}//\,{r_{03}}} \right)//{r_{02}}} \right)$$
3
GATE ECE 2016 Set 3
Numerical
+2
-0
In the circuit shown in the figure, transistor M1 is in saturation and has transconductance gm = 0.01 siemens. Ignoring internal parasitic capacitances and assuming the channel length modulation $$\lambda $$ to be zero, the small signal input pole frequency (in kHz) is _____ GATE ECE 2016 Set 3 Electronic Devices and VLSI - IC Basics and MOSFET Question 8 English
Your input ____
4
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider a long-channel NMOS transistor with source and body connected together. Assume that the electron mobility is independent of VGS and VDS. Given,
gm = 0.5$$\mu {\rm A}/V$$ for VDS = 50 m V and VGS = 2V,
gd = $$8\mu {\rm A}/V$$ for VGS = 2 V and VDS = 0 V,
Where gm =$${{\partial {{\rm I}_D}} \over {\partial {V_{GS}}}}\,\,and\,\,{g_d}\,\, = \,{{\partial {{\rm I}_D}} \over {\partial {V_{DS}}}}$$

The threshold voltage (in volts) of the transistor is

Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12