Differential Equations · Engineering Mathematics · GATE ECE
Marks 1
The general form of the complementary function of a differential equation is given by $y(t) = (At + B)e^{-2t}$, where $A$ and $B$ are real constants determined by the initial condition. The corresponding differential equation is ____.
Consider the following partial differential equation (PDE)
$$a{{{\partial ^2}f(x,y)} \over {\partial {x^2}}} + b{{{\partial ^2}f(x,y)} \over {\partial {y^2}}} = f(x,y)$$,
where a and b are distinct positive real numbers. Select the combination(s) of values of the real parameters $$\xi $$ and $$\eta $$ such that $$f(x,y) = {e^{\xi x + \eta y}}$$ is a solution of the given PDE.
$${\rm I}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly independent on $$ - 1 \le x \le 0$$
$${\rm II}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly dependent on $$0 \le x \le 1$$
$${\rm III}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly independent on $$0 \le x \le 1$$
$${\rm IV}.\,\,\,\,\,$$ $${y_1},{y_2}$$ and $${y_3}$$ are linearly dependent on $$ - 1 \le x \le 0$$
Which one among the following is correct?
Marks 2
$${{{d^2}y} \over {d{t^2}}} = - {{dy} \over {dt}} - {{5y} \over 4}$$.
The initial conditions are y(0) = 1 and $${\left. {{{dy} \over {dt}}} \right|_{t = 0}}$$ = 0.
The position (accurate to two decimal places) of the particle at t = $$\pi $$ is _______.
$${{dy} \over {dx}} = {{{x^2} + {y^2}} \over {2y}} + {y \over x}$$. The equation that describes the curve is
Given $$x(0) = 20$$ & $$\,x\left( 1 \right) = {{10} \over e},$$ where $$e=2.718,$$
The value of $$x(2)$$ is
Group $$I$$
$$P:$$$$\,\,\,$$ $${{dy} \over {dx}} = {y \over x}$$
$$Q:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - y} \over x}$$
$$R:$$$$\,\,\,$$ $${{dy} \over {dx}} = {x \over y}$$
$$S:$$$$\,\,\,$$ $${{dy} \over {dx}} = {{ - x} \over y}$$
Group $$II$$
$$(1)$$$$\,\,\,$$ Circle
$$(2)$$$$\,\,\,$$ straight lines
$$(3)$$$$\,\,\,$$ Hyperbola
(i) $$y=0$$ for $$x=0$$ and
(ii) $$y=0$$ for $$x=a$$
The form of non-zero solution of $$y$$ (where $$m$$ varies over all integrals ) are
List-$${\rm I}$$
$$(P)$$ $${a_1}{{{d^2}y} \over {d{x^2}}} + {a_2}y{{dy} \over {dx}} + {a_3}y = {a_4}$$
$$(Q)$$ $${a_1}{{{d^2}y} \over {d{x^3}}} + {a_2}y = {a_3}$$
$$(Q)$$ $${a_1}{{{d^2}y} \over {d{x^2}}} + {a_2}x{{dy} \over {dx}} + {a_3}{x^2}y = 0$$
List-$${\rm II}$$
$$(1)$$ Non-linear differential equation
$$(2)$$ Linear differential equation with constants coefficients
$$(3)$$ Linear homogeneous differential equation
$$(4)$$ Non-linear homogeneous differential equation
$$(5)$$ Non-linear first order differential equation