Linear Algebra · Engineering Mathematics · GATE ECE

Start Practice

Marks 1

1

Let $\mathbb{R}$ and $\mathbb{R}^3$ denote the set of real numbers and the three dimensional vector space over it, respectively. The value of $\alpha$ for which the set of vectors

$$ \{ [2 \ -3 \ \alpha], \ [3 \ -1 \ 3], \ [1 \ -5 \ 7] \}$$

does not form a basis of $\mathbb{R}^3$ is _______.

GATE ECE 2024
2

Let the sets of eigenvalues and eigenvectors of a matrix B be $$\{ {\lambda _k}|1 \le k \le n\} $$ and $$\{ {v_k}|1 \le k \le n\} $$, respectively. For any invertible matrix P, the sets of eigenvalues and eigenvectors of the matrix A, where $$B = {P^{ - 1}}AP$$, respectively, are

GATE ECE 2023
3

Consider a system of linear equations Ax = b, where

$$A = \left[ {\matrix{ 1 \hfill & { - \sqrt 2 } \hfill & 3 \hfill \cr { - 1} \hfill & {\sqrt 2 } \hfill & { - 3} \hfill \cr } } \right]$$, $$b = \left[ {\matrix{ 1 \cr 3 \cr } } \right]$$

This system is equations admits __________.

GATE ECE 2022
4
Let M be a real 4 $$ \times $$ 4 matrix. Consider the following statements :

S1: M has 4 linearly independent eigenvectors.

S2: M has 4 distinct eigenvalues.

S3: M is non-singular (invertible).

Which one among the following is TRUE?
GATE ECE 2018
5
Consider matrix $$A = \left[ {\matrix{ k & {2k} \cr {{k^2} - k} & {{k^2}} \cr } } \right]$$ and

vector $$X = \left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$.

The number of distinct real values of k for which the equation AX = 0 has infinitely many solutions is _______.
GATE ECE 2018
6
The rank of the matrix $$M = \left[ {\matrix{ 5 & {10} & {10} \cr 1 & 0 & 2 \cr 3 & 6 & 6 \cr } } \right]$$ is
GATE ECE 2017 Set 1
7
Consider the $$5 \times 5$$ matrix $$A = \left[ {\matrix{ 1 & 2 & 3 & 4 & 5 \cr 5 & 1 & 2 & 3 & 4 \cr 4 & 5 & 1 & 2 & 3 \cr 3 & 4 & 5 & 1 & 2 \cr 2 & 3 & 4 & 5 & 1 \cr } } \right]$$
It is given that $$A$$ has only one real eigen value. Then the real eigen value of $$A$$ is
GATE ECE 2017 Set 1
8
Let $${M^4} = {\rm I}$$ (where $${\rm I}$$ denotes the identity matrix) and $$M \ne {\rm I},\,\,{M^2} \ne {\rm I}$$ and $${M^3} \ne {\rm I}$$. Then, for any natural number $$k, $$ $${M^{ - 1}}$$ equals:
GATE ECE 2016 Set 1
9
Consider a $$2 \times 2$$ square matrix $$A = \left[ {\matrix{ \sigma & x \cr \omega & \sigma \cr } } \right]$$
Where $$x$$ is unknown. If the eigenvalues of the matrix $$A$$ are $$\left( {\sigma + j\omega } \right)$$ and $$\left( {\sigma - j\omega } \right)$$, then $$x$$ is equal to
GATE ECE 2016 Set 3
10
The value of $$x$$ for which the matrix $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 9 & 7 & {13} \cr { - 6} & { - 4} & { - 9 + x} \cr } } \right]$$ has zero as an eigen value is __________.
GATE ECE 2016 Set 2
11
For $$A = \left[ {\matrix{ 1 & {\tan x} \cr { - \tan x} & 1 \cr } } \right],$$ the determinant of $${A^T}\,{A^{ - 1}}$$ is
GATE ECE 2015 Set 3
12
The value of $$'x'$$ for which all the eigenvalues of the matrix given below are real is $$\left[ {\matrix{ {10} & {5 + j} & 4 \cr x & {20} & 2 \cr 4 & 2 & { - 10} \cr } } \right]$$
GATE ECE 2015 Set 2
13
Consider system of linear equations : $$$x-2y+3z=-1$$$ $$$x-3y+4z=1$$$ and $$$-2x+4y-6z=k,$$$

The value of $$'k'$$ for which the system has infinitely many solutions is _______.

GATE ECE 2015 Set 1
14
The value of $$'P'$$ such that the vector $$\left[ {\matrix{ 1 \cr 2 \cr 3 \cr } } \right]$$ is an eigenvector of the matrix $$\left[ {\matrix{ 4 & 1 & 2 \cr P & 2 & 1 \cr {14} & { - 4} & {10} \cr } } \right]$$ is ________.
GATE ECE 2015 Set 1
15
$$A$$ real $$\left( {4\,\, \times \,\,4} \right)$$ matrix $$A$$ satisfies the equation $${A^2} = {\rm I},$$ where $${\rm I}$$ is the $$\left( {4\,\, \times \,\,4} \right)$$ identity matrix. The positive eigen value of $$A$$ is _______.
GATE ECE 2014 Set 1
16
Consider the matrix $${J_6} = \left[ {\matrix{ 0 & 0 & 0 & 0 & 0 & 1 \cr 0 & 0 & 0 & 0 & 1 & 0 \cr 0 & 0 & 0 & 1 & 0 & 0 \cr 0 & 0 & 1 & 0 & 0 & 0 \cr 0 & 1 & 0 & 0 & 0 & 0 \cr 1 & 0 & 0 & 0 & 0 & 0 \cr } } \right]$$

Which is obtained by reversing the order of the columns of the identity matrix $${{\rm I}_6}$$. Let $$P = {{\rm I}_6} + \alpha \,\,{J_6},$$ where $$\alpha $$ is a non $$-$$ negative real number. The value of $$\alpha $$ for which det $$(P)=0$$ is _______.

GATE ECE 2014 Set 1
17
For matrices of same dimension $$M,N$$ and scalar $$c,$$ which one of these properties DOES NOT ALWAYS hold ?
GATE ECE 2014 Set 1
18
Which one of the following statements is NOT true for a square matrix $$A$$?
GATE ECE 2014 Set 3
19
The maximum value of the determinant among all $$2 \times 2$$ real symmetric matrices with trace $$14$$ is ______.
GATE ECE 2014 Set 2
20
The system of linear equations $$\left( {\matrix{ 2 & 1 & 3 \cr 3 & 0 & 1 \cr 1 & 2 & 5 \cr } } \right)\left( {\matrix{ a \cr b \cr c \cr } } \right) = \left( {\matrix{ 5 \cr { - 4} \cr {14} \cr } } \right)$$ has
GATE ECE 2014 Set 2
21
The determinant of matrix $$A$$ is $$5$$ and the determinant of matrix $$B$$ is $$40.$$ The determinant of matrix $$AB$$ is _______.
GATE ECE 2014 Set 2
22
The minimum eigenvalue of the following matrix is $$\left[ {\matrix{ 3 & 5 & 2 \cr 5 & {12} & 7 \cr 2 & 7 & 5 \cr } } \right]$$
GATE ECE 2013
23
Let $$A$$ be an $$m\,\, \times \,\,n$$ matrix and $$B$$ an $$n\,\, \times \,\,m$$ matrix. It is given that determinant $$\left( {{{\rm I}_m} + AB} \right) = $$determinant $$\left( {{{\rm I}_n} + BA} \right),$$ where $${{{\rm I}_k}}$$ is the $$k \times k$$ identity matrix. Using the above property, the determinant of the matrix given below is $$\left[ {\matrix{ 2 & 1 & 1 & 1 \cr 1 & 2 & 1 & 1 \cr 1 & 1 & 2 & 1 \cr 1 & 1 & 1 & 2 \cr } } \right]$$
GATE ECE 2013
24
Given that $$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$ and $${\rm I} = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ the value of $${A^3}$$ is
GATE ECE 2012
25
The system of equations $$x+y+z=6,$$ $$x+4y+6z=20,$$ $$x + 4y + \lambda z = \mu $$ has no solution for values of $$\lambda $$ and $$\mu $$ given by
GATE ECE 2011
26
The eigen values of a skew-symmetric matrix are
GATE ECE 2010
27
All the four entries of $$2$$ $$x$$ $$2$$ matrix
$$P = \left[ {\matrix{ {{p_{11}}} & {{p_{12}}} \cr {{p_{21}}} & {{p_{22}}} \cr } } \right]$$ are non-zero and one of the eigen values is zero. Which of the following statement is true?
GATE ECE 2008
28
The system of linear equations $$\left. {\matrix{ {4x + 2y = 7} \cr {2x + y = 6} \cr } } \right\}$$ has
GATE ECE 2008
29
For the matrix $$\left[ {\matrix{ 4 & 2 \cr 2 & 4 \cr } } \right].$$ The eigen value corresponding to the eigen vector $$\left[ {\matrix{ {101} \cr {101} \cr } } \right]$$ is
GATE ECE 2006
30
The rank of the matrix $$\left[ {\matrix{ 1 & 1 & 1 \cr 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr } } \right]$$ is
GATE ECE 2006
31
The eigen values of the matrix $$\left[ {\matrix{ 2 & { - 1} & 0 & 0 \cr 0 & 3 & 0 & 0 \cr 0 & 0 & { - 2} & 0 \cr 0 & 0 & { - 1} & 4 \cr } } \right]$$ are
GATE ECE 2000
32
The eigen values of the matrix $$A = \left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$ are
GATE ECE 1998
33
The rank of $$\left( {m \times n} \right)$$ matrix $$\left( {m < n} \right)$$ cannot be more then
GATE ECE 1994
34
The following system of equations
$${{x_1} + {x_2} + {x_3} = 3}$$
$${{x_1} - {x_3} = 0}$$
$${{x_1} - {x_2} + {x_3} = 1}$$ has
GATE ECE 1994

Marks 2

1

Consider the matrix $\begin{bmatrix}1 & k \\ 2 & 1\end{bmatrix}$, where $k$ is a positive real number. Which of the following vectors is/are eigenvector(s) of this matrix?

GATE ECE 2024
2

Let $$x$$ be an $$n \times 1$$ real column vector with length $$l = \sqrt {{x^T}x} $$. The trace of the matrix $$P = x{x^T}$$ is

GATE ECE 2023
3

The state equation of a second order system is

$$x(t) = Ax(t),\,\,\,\,x(0)$$ is the initial condition.

Suppose $$\lambda_1$$ and $$\lambda_2$$ are two distinct eigenvalues of A and $$v_1$$ and $$v_2$$ are the corresponding eigenvectors. For constants $$\alpha_1$$ and $$\alpha_2$$, the solution, $$x(t)$$, of the state equation is

GATE ECE 2023
4

Let $$\alpha$$, $$\beta$$ two non-zero real numbers and v1, v2 be two non-zero real vectors of size 3 $$\times$$ 1. Suppose that v1 and v2 satisfy $$v_1^T{v_2} = 0$$, $$v_1^T{v_1} = 1$$ and $$v_2^T{v_2} = 1$$. Let A be the 3 $$\times$$ 3 matrix given by :

A = $$\alpha$$v1$$v_1^T$$ + $$\beta$$v2$$v_2^T$$

The eigen values of A are __________.

GATE ECE 2022
5
The rank of the matrix $$\left[ {\matrix{ 1 & { - 1} & 0 & 0 & 0 \cr 0 & 0 & 1 & { - 1} & 0 \cr 0 & 1 & { - 1} & 0 & 0 \cr { - 1} & 0 & 0 & 0 & 1 \cr 0 & 0 & 0 & 1 & { - 1} \cr } } \right]$$ is __________.
GATE ECE 2017 Set 2
6
A sequence $$x\left[ n \right]$$ is specified as $$$\left[ {\matrix{ {x\left[ n \right]} \cr {x\left[ {n - 1} \right]} \cr } } \right] = {\left[ {\matrix{ 1 & 1 \cr 1 & 0 \cr } } \right]^n}\left[ {\matrix{ 1 \cr 0 \cr } } \right],\,\,for\,\,n \ge 2.$$$
The initial conditions are $$x\left[ 0 \right] = 1,\,\,x\left[ 1 \right] = 1$$ and $$x\left[ n \right] = 0$$ for $$n < 0.$$ The value of $$x\left[ {12} \right]$$ is __________.
GATE ECE 2016 Set 1
7
If the vectors $${e_1} = \left( {1,0,2} \right),\,{e_2} = \left( {0,1,0} \right)$$ and $${e_3} = \left( { - 2,0,1} \right)$$ form an orthogonal basis of the three dimensional real space $${R^3},$$ then the vectors $$u = \left( {4,3, - 3} \right) \in {R^3}$$ can be expressed as
GATE ECE 2016 Set 3
8
The matrix $$A = \left[ {\matrix{ a & 0 & 3 & 7 \cr 2 & 5 & 1 & 3 \cr 0 & 0 & 2 & 4 \cr 0 & 0 & 0 & b \cr } } \right]$$ has det
$$(A)=100$$ and trace $$(A)=14.$$ The value of $$\left| {a - b} \right|$$ is ___________.
GATE ECE 2016 Set 2
9
The eigen values of the following matrix $$\left[ {\matrix{ { - 1} & 3 & 5 \cr { - 3} & { - 1} & 6 \cr 0 & 0 & 3 \cr } } \right]$$ are
GATE ECE 2009
10
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by

Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$

Eigen vector
$${V_1} = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$
$${V_2} = \left[ {\matrix{ 1 \cr -1 \cr } } \right]$$

The matrix is

GATE ECE 2006
11
Given the matrix $$\left[ {\matrix{ { - 4} & 2 \cr 4 & 3 \cr } } \right],$$ the eigen vector is
GATE ECE 2005
12
Given an orthogonal matrix $$A = \left[ {\matrix{ 1 & 1 & 1 & 1 \cr 1 & 1 & { - 1} & { - 1} \cr 1 & { - 1} & 0 & 0 \cr 0 & 0 & 1 & { - 1} \cr } } \right]$$ then the value of $${\left( {A{A^T}} \right)^{ - 1}}$$ is
GATE ECE 2005
13
If $$A = \left[ {\matrix{ 2 & { - 0.1} \cr 0 & 3 \cr } } \right]$$ and $${A^{ - 1}} = \left[ {\matrix{ {{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} & a \cr 0 & b \cr } } \right]$$ then $$a+b=$$
GATE ECE 2005
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12