Linear Algebra · Engineering Mathematics · GATE ECE

Start Practice

Marks 1

GATE ECE 2022
Consider a system of linear equations Ax = b, where $$A = \left[ {\matrix{ 1 \hfill & { - \sqrt 2 } \hfill & 3 \hfill \cr { - 1} \hfill & {\sq...
GATE ECE 2022
Let $$\alpha$$, $$\beta$$ two non-zero real numbers and v1, v2 be two non-zero real vectors of size 3 $$\times$$ 1. Suppose that v1 and v2 satisfy $$v...
GATE ECE 2018
Let M be a real 4 $$ \times $$ 4 matrix. Consider the following statements : S1: M has 4 linearly independent eigenvectors. S2: M has 4 distinct eige...
GATE ECE 2018
Consider matrix $$A = \left[ {\matrix{ k & {2k} \cr {{k^2} - k} & {{k^2}} \cr } } \right]$$ and vector $$X = \left[ {\matrix{ {...
GATE ECE 2017 Set 1
The rank of the matrix $$M = \left[ {\matrix{ 5 & {10} & {10} \cr 1 & 0 & 2 \cr 3 & 6 & 6 \cr } } \right]$$ i...
GATE ECE 2017 Set 1
Consider the $$5 \times 5$$ matrix $$A = \left[ {\matrix{ 1 & 2 & 3 & 4 & 5 \cr 5 & 1 & 2 & 3 & 4 \cr 4 &...
GATE ECE 2016 Set 3
Consider a $$2 \times 2$$ square matrix $$A = \left[ {\matrix{ \sigma & x \cr \omega & \sigma \cr } } \right]$$ Where $$x$$ is ...
GATE ECE 2016 Set 2
The value of $$x$$ for which the matrix $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 9 & 7 & {13} \cr { - 6} & { - 4} & {...
GATE ECE 2016 Set 1
Let $${M^4} = {\rm I}$$ (where $${\rm I}$$ denotes the identity matrix) and $$M \ne {\rm I},\,\,{M^2} \ne {\rm I}$$ and $${M^3} \ne {\rm I}$$. Then, ...
GATE ECE 2015 Set 3
For $$A = \left[ {\matrix{ 1 & {\tan x} \cr { - \tan x} & 1 \cr } } \right],$$ the determinant of $${A^T}\,{A^{ - 1}}$$ is
GATE ECE 2015 Set 2
The value of $$'x'$$ for which all the eigenvalues of the matrix given below are real is $$\left[ {\matrix{ {10} & {5 + j} & 4 \cr x ...
GATE ECE 2015 Set 1
Consider system of linear equations : $$$x-2y+3z=-1$$$ $$$x-3y+4z=1$$$ and $$$-2x+4y-6z=k,$$$ The value of $$'k'$$ for which the system has infinite...
GATE ECE 2015 Set 1
The value of $$'P'$$ such that the vector $$\left[ {\matrix{ 1 \cr 2 \cr 3 \cr } } \right]$$ is an eigenvector of the matrix $$\left...
GATE ECE 2014 Set 3
Which one of the following statements is NOT true for a square matrix $$A$$?
GATE ECE 2014 Set 2
The system of linear equations $$\left( {\matrix{ 2 & 1 & 3 \cr 3 & 0 & 1 \cr 1 & 2 & 5 \cr } } \right)\left(...
GATE ECE 2014 Set 2
The determinant of matrix $$A$$ is $$5$$ and the determinant of matrix $$B$$ is $$40.$$ The determinant of matrix $$AB$$ is _______.
GATE ECE 2014 Set 2
The maximum value of the determinant among all $$2 \times 2$$ real symmetric matrices with trace $$14$$ is ______.
GATE ECE 2014 Set 1
For matrices of same dimension $$M,N$$ and scalar $$c,$$ which one of these properties DOES NOT ALWAYS hold ?
GATE ECE 2014 Set 1
Consider the matrix $${J_6} = \left[ {\matrix{ 0 & 0 & 0 & 0 & 0 & 1 \cr 0 & 0 & 0 & 0 & 1 & 0 \cr ...
GATE ECE 2014 Set 1
$$A$$ real $$\left( {4\,\, \times \,\,4} \right)$$ matrix $$A$$ satisfies the equation $${A^2} = {\rm I},$$ where $${\rm I}$$ is the $$\left( {4\,\, \...
GATE ECE 2013
The minimum eigenvalue of the following matrix is $$\left[ {\matrix{ 3 & 5 & 2 \cr 5 & {12} & 7 \cr 2 & 7 & 5 \c...
GATE ECE 2013
Let $$A$$ be an $$m\,\, \times \,\,n$$ matrix and $$B$$ an $$n\,\, \times \,\,m$$ matrix. It is given that determinant $$\left( {{{\rm I}_m} + AB} \ri...
GATE ECE 2012
Given that $$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$ and $${\rm I} = \left[ {\matrix{ 1 & 0 \cr ...
GATE ECE 2011
The system of equations $$x+y+z=6,$$ $$x+4y+6z=20,$$ $$x + 4y + \lambda z = \mu $$ has no solution for values of $$\lambda $$ and $$\mu $$ given by
GATE ECE 2010
The eigen values of a skew-symmetric matrix are
GATE ECE 2008
All the four entries of $$2$$ $$x$$ $$2$$ matrix $$P = \left[ {\matrix{ {{p_{11}}} & {{p_{12}}} \cr {{p_{21}}} & {{p_{22}}} \cr }...
GATE ECE 2008
The system of linear equations $$\left. {\matrix{ {4x + 2y = 7} \cr {2x + y = 6} \cr } } \right\}$$ has
GATE ECE 2006
For the matrix $$\left[ {\matrix{ 4 & 2 \cr 2 & 4 \cr } } \right].$$ The eigen value corresponding to the eigen vector $$\left[ {\...
GATE ECE 2006
The rank of the matrix $$\left[ {\matrix{ 1 & 1 & 1 \cr 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr } } \right]$$ is
GATE ECE 2000
The eigen values of the matrix $$\left[ {\matrix{ 2 & { - 1} & 0 & 0 \cr 0 & 3 & 0 & 0 \cr 0 & 0 & { - 2}...
GATE ECE 1998
The eigen values of the matrix $$A = \left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$ are
GATE ECE 1994
The following system of equations $${{x_1} + {x_2} + {x_3} = 3}$$ $${{x_1} - {x_3} = 0}$$ $${{x_1} - {x_2} + {x_3} = 1}$$ has
GATE ECE 1994
The rank of $$\left( {m \times n} \right)$$ matrix $$\left( {m < n} \right)$$ cannot be more then

Marks 2

GATE ECE 2017 Set 2
The rank of the matrix $$\left[ {\matrix{ 1 & { - 1} & 0 & 0 & 0 \cr 0 & 0 & 1 & { - 1} & 0 \cr 0 & 1...
GATE ECE 2016 Set 3
If the vectors $${e_1} = \left( {1,0,2} \right),\,{e_2} = \left( {0,1,0} \right)$$ and $${e_3} = \left( { - 2,0,1} \right)$$ form an orthogonal basis ...
GATE ECE 2016 Set 2
The matrix $$A = \left[ {\matrix{ a & 0 & 3 & 7 \cr 2 & 5 & 1 & 3 \cr 0 & 0 & 2 & 4 \cr 0 & ...
GATE ECE 2016 Set 1
A sequence $$x\left[ n \right]$$ is specified as $$$\left[ {\matrix{ {x\left[ n \right]} \cr {x\left[ {n - 1} \right]} \cr } } \right] = ...
GATE ECE 2009
The eigen values of the following matrix $$\left[ {\matrix{ { - 1} & 3 & 5 \cr { - 3} & { - 1} & 6 \cr 0 & 0 & 3 ...
GATE ECE 2006
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by Eigen value $${\lambda _1} = 8$$ $${\lambda _2} = 4$$ E...
GATE ECE 2005
Given the matrix $$\left[ {\matrix{ { - 4} & 2 \cr 4 & 3 \cr } } \right],$$ the eigen vector is
GATE ECE 2005
Given an orthogonal matrix $$A = \left[ {\matrix{ 1 & 1 & 1 & 1 \cr 1 & 1 & { - 1} & { - 1} \cr 1 & { - 1} &a...
GATE ECE 2005
If $$A = \left[ {\matrix{ 2 & { - 0.1} \cr 0 & 3 \cr } } \right]$$ and $${A^{ - 1}} = \left[ {\matrix{ {{\raise0.5ex\hbox{$\scr...
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12