Two long parallel wires $X$ and $Y$, separated by a distance of 6 cm , carry currents of 5 A and 4A, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point P at a distance of 4 cm from wire Y is $x \times 10^{-5} \mathrm{~T}$. The value of $x$ is _________ . Take permeability of free space as $\mu_0=4 \pi \times 10^{-7}$ SI units.
A straight magnetic strip has a magnetic moment of $$44 \mathrm{~Am}^2$$. If the strip is bent in a semicircular shape, its magnetic moment will be ________ $$\mathrm{Am}^2$$.
(given $$\pi=\frac{22}{7}$$)
A square loop of edge length $$2 \mathrm{~m}$$ carrying current of $$2 \mathrm{~A}$$ is placed with its edges parallel to the $$x$$-$$y$$ axis. A magnetic field is passing through the $$x$$-$$y$$ plane and expressed as $$\vec{B}=B_0(1+4 x) \hat{k}$$, where $$B_o=5 T$$. The net magnetic force experienced by the loop is _________ $$\mathrm{N}$$.
A square loop PQRS having 10 turns, area $$3.6 \times 10^{-3} \mathrm{~m}^2$$ and resistance $$100 \Omega$$ is slowly and uniformly being pulled out of a uniform magnetic field of magnitude $$\mathrm{B}=0.5 \mathrm{~T}$$ as shown. Work done in pulling the loop out of the field in $$1.0 \mathrm{~s}$$ is _________ $$\times 10^{-6} \mathrm{~J}$$.