A charge of $$4.0 \mu \mathrm{C}$$ is moving with a velocity of $$4.0 \times 10^6 \mathrm{~ms}^{-1}$$ along the positive $$y$$ axis under a magnetic field $$\vec{B}$$ of strength $$(2 \hat{k}) \mathrm{T}$$. The force acting on the charge is $$x \hat{i} N$$. The value of $$x$$ is __________.
The magnetic field at the centre of a wire loop formed by two semicircular wires of radii $$R_1=2 \pi \mathrm{m}$$ and $$R_2=4 \pi \mathrm{m}$$, carrying current $$\mathrm{I}=4 \mathrm{~A}$$ as per figure given below is $$\alpha \times 10^{-7} \mathrm{~T}$$. The value of $$\alpha$$ is ________. (Centre $$\mathrm{O}$$ is common for all segments)
Two long, straight wires carry equal currents in opposite directions as shown in figure. The separation between the wires is $$5.0 \mathrm{~cm}$$. The magnitude of the magnetic field at a point $$\mathrm{P}$$ midway between the wires is _______ $$\mu \mathrm{T}$$
(Given : $$\mu_0=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}$$)