A square loop of edge length $$2 \mathrm{~m}$$ carrying current of $$2 \mathrm{~A}$$ is placed with its edges parallel to the $$x$$-$$y$$ axis. A magnetic field is passing through the $$x$$-$$y$$ plane and expressed as $$\vec{B}=B_0(1+4 x) \hat{k}$$, where $$B_o=5 T$$. The net magnetic force experienced by the loop is _________ $$\mathrm{N}$$.
A square loop PQRS having 10 turns, area $$3.6 \times 10^{-3} \mathrm{~m}^2$$ and resistance $$100 \Omega$$ is slowly and uniformly being pulled out of a uniform magnetic field of magnitude $$\mathrm{B}=0.5 \mathrm{~T}$$ as shown. Work done in pulling the loop out of the field in $$1.0 \mathrm{~s}$$ is _________ $$\times 10^{-6} \mathrm{~J}$$.
An electron with kinetic energy $$5 \mathrm{~eV}$$ enters a region of uniform magnetic field of 3 $$\mu \mathrm{T}$$ perpendicular to its direction. An electric field $$\mathrm{E}$$ is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is __________ $$\mathrm{NC}^{-1}$$.
(Given, mass of electron $$=9 \times 10^{-31} \mathrm{~kg}$$, electric charge $$=1.6 \times 10^{-19} \mathrm{C}$$)
A coil having 100 turns, area of $$5 \times 10^{-3} \mathrm{~m}^2$$, carrying current of $$1 \mathrm{~mA}$$ is placed in uniform magnetic field of $$0.20 \mathrm{~T}$$ such a way that plane of coil is perpendicular to the magnetic field. The work done in turning the coil through $$90^{\circ}$$ is _________ $$\mu \mathrm{J}$$.