A 2A current carrying straight metal wire of resistance $$1 \Omega$$, resistivity $$2 \times 10^{-6} \Omega \mathrm{m}$$, area of cross-section $$10 \mathrm{~mm}^2$$ and mass $$500 \mathrm{~g}$$ is suspended horizontally in mid air by applying a uniform magnetic field $$\vec{B}$$. The magnitude of B is ________ $$\times 10^{-1} \mathrm{~T}$$ (given, $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$$).
Two parallel long current carrying wire separated by a distance $$2 r$$ are shown in the figure. The ratio of magnetic field at $$A$$ to the magnetic field produced at $$C$$ is $$\frac{x}{7}$$. The value of $$x$$ is __________.
A rod of length $$60 \mathrm{~cm}$$ rotates with a uniform angular velocity $$20 \mathrm{~rad} \mathrm{s}^{-1}$$ about its perpendicular bisector, in a uniform magnetic filed $$0.5 T$$. The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is _________ V.
The magnetic field existing in a region is given by $$\vec{B}=0.2(1+2 x) \hat{k}$$. A square loop of edge $$50 \mathrm{~cm}$$ carrying 0.5 A current is placed in $$x$$-$$y$$ plane with its edges parallel to the $$x$$-$$y$$ axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is _________ $$\mathrm{mN}$$.