To maintain a speed of 80 km/h by a bus of mass 500 kg on a plane rough road for 4 km distance, the work done by the engine of the bus will be ____________ KJ. [The coefficient of friction between tyre of bus and road is 0.04.]
A block of mass $$5 \mathrm{~kg}$$ starting from rest pulled up on a smooth incline plane making an angle of $$30^{\circ}$$ with horizontal with an affective acceleration of $$1 \mathrm{~ms}^{-2}$$. The power delivered by the pulling force at $$t=10 \mathrm{~s}$$ from the start is ___________ W.
[use $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ ]
(calculate the nearest integer value)
A force $$\vec{F}=(2+3 x) \hat{i}$$ acts on a particle in the $$x$$ direction where F is in newton and $$x$$ is in meter. The work done by this force during a displacement from $$x=0$$ to $$x=4 \mathrm{~m}$$, is __________ J.
If the maximum load carried by an elevator is $$1400 \mathrm{~kg}$$ ( $$600 \mathrm{~kg}$$ - Passengers + 800 $$\mathrm{kg}$$ - elevator), which is moving up with a uniform speed of $$3 \mathrm{~m} \mathrm{~s}^{-1}$$ and the frictional force acting on it is $$2000 \mathrm{~N}$$, then the maximum power used by the motor is __________ $$\mathrm{kW}\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$$