A body of mass $$5 \mathrm{~kg}$$ is moving with a momentum of $$10 \mathrm{~kg} \mathrm{~ms}^{-1}$$. Now a force of $$2 \mathrm{~N}$$ acts on the body in the direction of its motion for $$5 \mathrm{~s}$$. The increase in the Kinetic energy of the body is ___________ $$\mathrm{J}$$.
A body is dropped on ground from a height '$$h_{1}$$' and after hitting the ground, it rebounds to a height '$$h_{2}$$'. If the ratio of velocities of the body just before and after hitting ground is 4 , then percentage loss in kinetic energy of the body is $$\frac{x}{4}$$. The value of $$x$$ is ____________.
A particle of mass $$10 \mathrm{~g}$$ moves in a straight line with retardation $$2 x$$, where $$x$$ is the displacement in SI units. Its loss of kinetic energy for above displacement is $$\left(\frac{10}{x}\right)^{-n}$$ J. The value of $$\mathrm{n}$$ will be __________
A block is fastened to a horizontal spring. The block is pulled to a distance $$x=10 \mathrm{~cm}$$ from its equilibrium position (at $$x=0$$) on a frictionless surface from rest. The energy of the block at $$x=5$$ $$\mathrm{cm}$$ is $$0.25 \mathrm{~J}$$. The spring constant of the spring is ___________ $$\mathrm{Nm}^{-1}$$