A body of mass 1kg begins to move under the action of a time dependent force $$\overrightarrow F = \left( {t\widehat i + 3{t^2}\,\widehat j} \right)$$ N, where $$\widehat i$$ and $$\widehat j$$ are the unit vectors along $$x$$ and $$y$$ axis. The power developed by above force, at the time t = 2s, will be ____________ W.

A spherical body of mass 2 kg starting from rest acquires a kinetic energy of 10000 J at the end of $$\mathrm{5^{th}}$$ second. The force acted on the body is ________ N.

A block of mass '$$\mathrm{m}$$' (as shown in figure) moving with kinetic energy E compresses a spring through a distance $$25 \mathrm{~cm}$$ when, its speed is halved. The value of spring constant of used spring will be $$\mathrm{nE} \,\,\mathrm{Nm}^{-1}$$ for $$\mathrm{n}=$$ _________.

A uniform chain of 6 m length is placed on a table such that a part of its length is hanging over the edge of the table. The system is at rest. The co-efficient of static friction between the chain and the surface of the table is 0.5, the maximum length of the chain hanging from the table is ___________ m.