Nucleus A having $$Z=17$$ and equal number of protons and neutrons has $$1.2 ~\mathrm{MeV}$$ binding energy per nucleon.

Another nucleus $$\mathrm{B}$$ of $$Z=12$$ has total 26 nucleons and $$1.8 ~\mathrm{MeV}$$ binding energy per nucleons.

The difference of binding energy of $$\mathrm{B}$$ and $$\mathrm{A}$$ will be _____________ $$\mathrm{MeV}$$.

A light of energy $$12.75 ~\mathrm{eV}$$ is incident on a hydrogen atom in its ground state. The atom absorbs the radiation and reaches to one of its excited states. The angular momentum of the atom in the excited state is $$\frac{x}{\pi} \times 10^{-17} ~\mathrm{eVs}$$. The value of $$x$$ is ___________ (use $$h=4.14 \times 10^{-15} ~\mathrm{eVs}, c=3 \times 10^{8} \mathrm{~ms}^{-1}$$ ).

For hydrogen atom, $$\lambda_{1}$$ and $$\lambda_{2}$$ are the wavelengths corresponding to the transitions 1 and 2 respectively as shown in figure. The ratio of $$\lambda_{1}$$ and $$\lambda_{2}$$ is $$\frac{x}{32}$$. The value of $$x$$ is __________.