A nucleus has mass number $$A_1$$ and volume $$V_1$$. Another nucleus has mass number $$A_2$$ and Volume $$V_2$$. If relation between mass number is $$A_2=4 A_1$$, then $$\frac{V_2}{V_1}=$$ __________.
The mass defect in a particular reaction is $$0.4 \mathrm{~g}$$. The amount of energy liberated is $$n \times 10^7 \mathrm{~kWh}$$, where $$n=$$ __________. (speed of light $$\left.=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$$
A electron of hydrogen atom on an excited state is having energy $$\mathrm{E}_{\mathrm{n}}=-0.85 \mathrm{~eV}$$. The maximum number of allowed transitions to lower energy level is _________.
Hydrogen atom is bombarded with electrons accelerated through a potential difference of $$\mathrm{V}$$, which causes excitation of hydrogen atoms. If the experiment is being performed at $$\mathrm{T}=0 \mathrm{~K}$$, the minimum potential difference needed to observe any Balmer series lines in the emission spectra will be $$\frac{\alpha}{10} \mathrm{~V}$$, where $$\alpha=$$ __________.