In the figure given below, a block of mass $$M=490 \mathrm{~g}$$ placed on a frictionless table is connected with two springs having same spring constant $$\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right)$$. If the block is horizontally displaced through '$$\mathrm{X}$$' $$\mathrm{m}$$ then the number of complete oscillations it will make in $$14 \pi$$ seconds will be _____________.
The general displacement of a simple harmonic oscillator is $$x = A\sin \omega t$$. Let T be its time period. The slope of its potential energy (U) - time (t) curve will be maximum when $$t = {T \over \beta }$$. The value of $$\beta$$ is ______________.
A particle of mass 250 g executes a simple harmonic motion under a periodic force $$\mathrm{F}=(-25~x)\mathrm{N}$$. The particle attains a maximum speed of 4 m/s during its oscillation. The amplitude of the motion is ___________ cm.