A rectangular block of mass $$5 \mathrm{~kg}$$ attached to a horizontal spiral spring executes simple harmonic motion of amplitude $$1 \mathrm{~m}$$ and time period $$3.14 \mathrm{~s}$$. The maximum force exerted by spring on block is _________ N

A simple pendulum with length $$100 \mathrm{~cm}$$ and bob of mass $$250 \mathrm{~g}$$ is executing S.H.M. of amplitude $$10 \mathrm{~cm}$$. The maximum tension in the string is found to be $$\frac{x}{40} \mathrm{~N}$$. The value of $$x$$ is ___________.

The amplitude of a particle executing SHM is $$3 \mathrm{~cm}$$. The displacement at which its kinetic energy will be $$25 \%$$ more than the potential energy is: __________ $$\mathrm{cm}$$

In the figure given below, a block of mass $$M=490 \mathrm{~g}$$ placed on a frictionless table is connected with two springs having same spring constant $$\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right)$$. If the block is horizontally displaced through '$$\mathrm{X}$$' $$\mathrm{m}$$ then the number of complete oscillations it will make in $$14 \pi$$ seconds will be _____________.