A particle of mass $$0.50 \mathrm{~kg}$$ executes simple harmonic motion under force $$F=-50(\mathrm{Nm}^{-1}) x$$. The time period of oscillation is $$\frac{x}{35} s$$. The value of $$x$$ is _________.
(Given $$\pi=\frac{22}{7}$$)
The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of $$4 \mathrm{~m}, 2 \mathrm{~ms}^{-1}$$ and $$16 \mathrm{~ms}^{-2}$$ at a certain instant. The amplitude of the motion is $$\sqrt{x}, \mathrm{~m}$$ where $$x$$ is _________.
An object of mass $$0.2 \mathrm{~kg}$$ executes simple harmonic motion along $$x$$ axis with frequency of $$\left(\frac{25}{\pi}\right) \mathrm{Hz}$$. At the position $$x=0.04 \mathrm{~m}$$ the object has kinetic energy $$0.5 \mathrm{~J}$$ and potential energy $$0.4 \mathrm{~J}$$. The amplitude of oscillation is ________ $$\mathrm{cm}$$.
A particle is doing simple harmonic motion of amplitude $$0.06 \mathrm{~m}$$ and time period $$3.14 \mathrm{~s}$$. The maximum velocity of the particle is _________ $$\mathrm{cm} / \mathrm{s}$$.