A ball of mass $$200 \mathrm{~g}$$ rests on a vertical post of height $$20 \mathrm{~m}$$. A bullet of mass $$10 \mathrm{~g}$$, travelling in horizontal direction, hits the centre of the ball. After collision both travels independently. The ball hits the ground at a distance $$30 \mathrm{~m}$$ and the bullet at a distance of $$120 \mathrm{~m}$$ from the foot of the post. The value of initial velocity of the bullet will be (if $$g=10 \mathrm{~m} / \mathrm{s}^{2}$$) :
If momentum of a body is increased by 20%, then its kinetic energy increases by
Two bodies of mass $$1 \mathrm{~kg}$$ and $$3 \mathrm{~kg}$$ have position vectors $$\hat{i}+2 \hat{j}+\hat{k}$$ and $$-3 \hat{i}-2 \hat{j}+\hat{k}$$ respectively. The magnitude of position vector of centre of mass of this system will be similar to the magnitude of vector :
In two different experiments, an object of mass $$5 \mathrm{~kg}$$ moving with a speed of $$25 \mathrm{~ms}^{-1}$$ hits two different walls and comes to rest within (i) 3 second, (ii) 5 seconds, respectively. Choose the correct option out of the following :