1
JEE Main 2019 (Online) 8th April Evening Slot
+4
-1
Let $$\left| {\mathop {{A_1}}\limits^ \to } \right| = 3$$, $$\left| {\mathop {{A_2}}\limits^ \to } \right| = 5$$ and $$\left| {\mathop {{A_1}}\limits^ \to + \mathop {{A_2}}\limits^ \to } \right| = 5$$. The value of $$\left( {2\mathop {{A_1}}\limits^ \to + 3\mathop {{A_2}}\limits^ \to } \right)\left( {3\mathop {{A_1}}\limits^ \to - \mathop {2{A_2}}\limits^ \to } \right)$$ is :-
A
–118.5
B
–112.5
C
–99.5
D
–106.5
2
JEE Main 2019 (Online) 10th January Evening Slot
+4
-1
Two vectors $$\overrightarrow A$$ and $$\overrightarrow B$$ have equal magnitudes. The magnitude of $$\left( {\overrightarrow A + \overrightarrow B } \right)$$ is 'n' times the magnitude of $$\left( {\overrightarrow A - \overrightarrow B } \right)$$ . The angle between $${\overrightarrow A }$$ and $${\overrightarrow B }$$ is -
A
$${\sin ^{ - 1}}\left[ {{{n - 1} \over {n + 1}}} \right]$$
B
$${\sin ^{ - 1}}\left[ {{{{n^2} - 1} \over {{n^2} + 1}}} \right]$$
C
$${\cos ^{ - 1}}\left[ {{{{n^2} - 1} \over {{n^2} + 1}}} \right]$$
D
$${\cos ^{ - 1}}\left[ {{{n - 1} \over {n + 1}}} \right]$$
3
JEE Main 2019 (Online) 10th January Morning Slot
+4
-1
In the cube of side ‘a’ shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be -

A
$${1 \over 2}a\left( {\widehat k - \widehat i} \right)$$
B
$${1 \over 2}a\left( {\widehat j - \widehat i} \right)$$
C
$${1 \over 2}a\left( {\widehat j - \widehat k} \right)$$
D
$${1 \over 2}a\left( {\widehat i - \widehat k} \right)$$
4
JEE Main 2018 (Online) 16th April Morning Slot
+4
-1
Let $$\overrightarrow A$$ = $$\left( {\widehat i + \widehat j} \right)$$ and, $$\overrightarrow B = \left( {2\widehat i - \widehat j} \right).$$ The magnitude of a coplanar vector $$\overrightarrow C$$ such that $$\overrightarrow A .\overrightarrow C = \overrightarrow B .\overrightarrow C = \overrightarrow A .\overrightarrow B ,$$ is given by :
A
$$\sqrt {{{10} \over 9}}$$
B
$$\sqrt {{{5} \over 9}}$$
C
$$\sqrt {{{20} \over 9}}$$
D
$$\sqrt {{{9} \over 12}}$$
EXAM MAP
Medical
NEET