1
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider a long-channel NMOS transistor with source and body connected together. Assume that the electron mobility is independent of VGS and VDS. Given,
gm = 0.5$$\mu {\rm A}/V$$ for VDS = 50 m V and VGS = 2V,
gd = $$8\mu {\rm A}/V$$ for VGS = 2 V and VDS = 0 V,
Where gm =$${{\partial {{\rm I}_D}} \over {\partial {V_{GS}}}}\,\,and\,\,{g_d}\,\, = \,{{\partial {{\rm I}_D}} \over {\partial {V_{DS}}}}$$

The threshold voltage (in volts) of the transistor is

2
GATE ECE 2016 Set 2
+2
-0.6
A voltage VG is applied across a MOS capacitor with metal gate and p-type silicon substrate at T=300 K. The inversion carrier density (in number of carriers per unit area) for VG = 0.8 V is $$2\,\, \times \,\,{10^{11}}\,\,\,\,\,\,c{m^{ - 2}}$$ . For $${V_G}\,\, = \,\,1.3\,\,V,$$ the inversion carrier density is $$4\,\,\, \times \,\,\,{10^{11}}\,\,\,\,c{m^{ - 2}}.$$ What is the value of the inversion carrier density for VG = 1.8 V?
A
$$4.5 \times {10^{11}}\,\,c{m^{ - 2}}$$
B
$$6.0 \times {10^{11}}\,\,c{m^{ - 2}}$$
C
$$7.2 \times {10^{11}}\,\,c{m^{ - 2}}$$
D
$$8.4 \times {10^{11}}\,\,c{m^{ - 2}}$$
3
GATE ECE 2016 Set 1
Numerical
+2
-0
Consider an n-channel metal oxide semiconductor field effect transistor (MOSFET) with a gate-to-source voltage of 1.8 V. Assume that $${W \over L} = 4,{\mu _{\rm N}}{C_{ox}} = 70 \times {10^{ - 6}}{\rm A}{V^{ - 2}}$$ , the threshold voltage is 0.3V, and the channel length modulation parameter is 0.09 V-1, In the saturation region, the drain conductance (in micro siemens) is__________.
4
GATE ECE 2015 Set 3
Numerical
+2
-0
In the circuit shown, both the enhancement mode NMOS transistors have the following characteristics: kn = $${\mu _n}{C_{ox}}(W/L) = 1m{\rm A}/{V^2}$$ ; VTN = 1V. Asuume that the channel length modulation parameter $$\lambda$$ is zero and body is shorted to source. The minimum supply voltage VDD (in volts) needed to ensure that transistor M1 operates in saturation mode of operation is _____