Two particles are located at equal distance from origin. The position vectors of those are represented by $\vec{A}=2 \hat{i}+3 n \hat{j}+2 \hat{k}$ and $\bar{B}=2 \hat{i}-2 \hat{j}+4 p \hat{k}$, respectively. If both the vectors are at right angle to each other, the value of $n^{-1}$ is ________ .
The resultant of two vectors $$\vec{A}$$ and $$\vec{B}$$ is perpendicular to $$\vec{A}$$ and its magnitude is half that of $$\vec{B}$$. The angle between vectors $$\vec{A}$$ and $$\vec{B}$$ is _________$$^\circ$$.
If $$\vec{a}$$ and $$\vec{b}$$ makes an angle $$\cos ^{-1}\left(\frac{5}{9}\right)$$ with each other, then $$|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$$ for $$|\vec{a}|=n|\vec{b}|$$ The integer value of $$\mathrm{n}$$ is _________.
Three vectors $$\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$$ and $$\overrightarrow{\mathrm{OR}}$$ each of magnitude $$\mathrm{A}$$ are acting as shown in figure. The resultant of the three vectors is $$\mathrm{A} \sqrt{x}$$. The value of $$x$$ is _________.