Three vectors $$\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$$ and $$\overrightarrow{\mathrm{OR}}$$ each of magnitude $$\mathrm{A}$$ are acting as shown in figure. The resultant of the three vectors is $$\mathrm{A} \sqrt{x}$$. The value of $$x$$ is _________.
For three vectors $$\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k}), \vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$$ and $$\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$$, if $$\vec{A} \cdot(\vec{B} \times \vec{C})=0$$, then value of $$x$$ is ________.
A vector has magnitude same as that of $$\vec{A}=3 \hat{i}+4 \hat{j}$$ and is parallel to $$\vec{B}=4 \hat{i}+3 \hat{j}$$. The $$x$$ and $$y$$ components of this vector in first quadrant are $$x$$ and 3 respectively where $$x=$$ _________.
If $$\overrightarrow P = 3\widehat i + \sqrt 3 \widehat j + 2\widehat k$$ and $$\overrightarrow Q = 4\widehat i + \sqrt 3 \widehat j + 2.5\widehat k$$ then, the unit vector in the direction of $$\overrightarrow P \times \overrightarrow Q $$ is $${1 \over x}\left( {\sqrt 3 \widehat i + \widehat j - 2\sqrt 3 \widehat k} \right)$$. The value of $$x$$ is _________.