The number density of free electrons in copper is nearly $$8 \times 10^{28} \mathrm{~m}^{-3}$$. A copper wire has its area of cross section $$=2 \times 10^{-6} \mathrm{~m}^{2}$$ and is carrying a current of $$3.2 \mathrm{~A}$$. The drift speed of the electrons is ___________ $$\times 10^{-6} \mathrm{ms}^{-1}$$
A current of $$2 \mathrm{~A}$$ flows through a wire of cross-sectional area $$25.0 \mathrm{~mm}^{2}$$. The number of free electrons in a cubic meter are $$2.0 \times 10^{28}$$. The drift velocity of the electrons is __________ $$\times 10^{-6} \mathrm{~ms}^{-1}$$ (given, charge on electron $$=1.6 \times 10^{-19} \mathrm{C}$$ ).
As shown in the figure, the voltmeter reads $$2 \mathrm{~V}$$ across $$5 ~\Omega$$ resistor. The resistance of the voltmeter is _________ $$\Omega$$.
The length of a metallic wire is increased by $$20 \%$$ and its area of cross section is reduced by $$4 \%$$. The percentage change in resistance of the metallic wire is __________.