The graph between $$\frac{1}{u}$$ and $$\frac{1}{v}$$ for a thin convex lens in order to determine its focal length is plotted as shown in the figure. The refractive index of lens is $$1.5$$ and its both the surfaces have same radius of curvature $$R$$. The value of $$R$$ will be ____________ $$\mathrm{cm} .$$ (where $$u=$$ object distance, $$v=$$ image distance)
A convex lens of focal length 20 cm is placed in front of a convex mirror with principal axis coinciding each other. The distance between the lens and mirror is 10 cm. A point object is placed on principal axis at a distance of 60 cm from the convex lens. The image formed by combination coincides the object itself. The focal length of the convex mirror is ____________ cm.
The refractive index of an equilateral prism is $$\sqrt 2 $$. The angle of emergence under minimum deviation position of prism, in degree, is ___________.
A parallel beam of light is allowed to fall on a transparent spherical globe of diameter 30 cm and refractive index 1.5. The distance from the centre of the globe at which the beam of light can converge is _____________ mm.