A thin cylindrical rod of length $$10 \mathrm{~cm}$$ is placed horizontally on the principle axis of a concave mirror of focal length $$20 \mathrm{~cm}$$. The rod is placed in a such a way that mid point of the rod is at $$40 \mathrm{~cm}$$ from the pole of mirror. The length of the image formed by the mirror will be $$\frac{x}{3} \mathrm{~cm}$$. The value of $$x$$ is _____________.
In a medium the speed of light wave decreases to $$0.2$$ times to its speed in free space The ratio of relative permittivity to the refractive index of the medium is $$x: 1$$. The value of $$x$$ is _________.
(Given speed of light in free space $$=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$$ and for the given medium $$\mu_{\mathrm{r}}=1$$)
In a Young's double slit experiment, the intensities at two points, for the path differences $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ ( $\lambda$ being the wavelength of light used) are $I_{1}$ and $I_{2}$ respectively. If $I_{0}$ denotes the intensity produced by each one of the individual slits, then $\frac{I_{1}+I_{2}}{I_{0}}=$ __________.