A body of mass $$2 \mathrm{~kg}$$ begins to move under the action of a time dependent force given by $$\vec{F}=\left(6 t \hat{i}+6 t^2 \hat{j}\right) N$$. The power developed by the force at the time $$t$$ is given by:
A block of mass $$1 \mathrm{~kg}$$ is pushed up a surface inclined to horizontal at an angle of $$60^{\circ}$$ by a force of $$10 \mathrm{~N}$$ parallel to the inclined surface as shown in figure. When the block is pushed up by $$10 \mathrm{~m}$$ along inclined surface, the work done against frictional force is :
$$\left[g=10 \mathrm{~m} / \mathrm{s}^2\right]$$
A particle is placed at the point $$A$$ of a frictionless track $$A B C$$ as shown in figure. It is gently pushed towards right. The speed of the particle when it reaches the point B is :
(Take $$g=10 \mathrm{~m} / \mathrm{s}^2$$).
A bob of mass '$$m$$' is suspended by a light string of length '$$L$$'. It is imparted a minimum horizontal velocity at the lowest point $$A$$ such that it just completes half circle reaching the top most position B. The ratio of kinetic energies $$\frac{(K . E)_A}{(K . E)_B}$$ is :