A ball is thrown vertically upwards with a velocity of $$19.6 \mathrm{~ms}^{-1}$$ from the top of a tower. The ball strikes the ground after $$6 \mathrm{~s}$$. The height from the ground up to which the ball can rise will be $$\left(\frac{k}{5}\right) \mathrm{m}$$. The value of $$\mathrm{k}$$ is __________. (use $$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$$)

Two inclined planes are placed as shown in figure. A block is projected from the Point A of inclined plane AB along its surface with a velocity just sufficient to carry it to the top Point B at a height 10 m. After reaching the Point B the block slides down on inclined plane BC. Time it takes to reach to the point C from point A is $$t(\sqrt{2}+1)$$ s. The value of t is ___________.

(use $$\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$$ )

A ball of mass m is thrown vertically upward. Another ball of mass $$2 \mathrm{~m}$$ is thrown at an angle $$\theta$$ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $$\frac{1}{x}$$. The value of x is _____________.

If the initial velocity in horizontal direction of a projectile is unit vector $$\hat{i}$$ and the equation of trajectory is $$y=5 x(1-x)$$. The $$y$$ component vector of the initial velocity is ______________ $$\hat{j}$$. ($$\mathrm{Take}$$ $$\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$$