The velocity of the particle when its acceleration becomes zero is _________ $\mathrm{m} / \mathrm{s}$.
The displacement and the increase in the velocity of a moving particle in the time interval of $$t$$ to $$(t+1) \mathrm{s}$$ are $$125 \mathrm{~m}$$ and $$50 \mathrm{~m} / \mathrm{s}$$, respectively. The distance travelled by the particle in $$(\mathrm{t}+2)^{\mathrm{th}} \mathrm{s}$$ is _________ m.
A body falling under gravity covers two points $$A$$ and $$B$$ separated by $$80 \mathrm{~m}$$ in $$2 \mathrm{~s}$$. The distance of upper point A from the starting point is _________ $$\mathrm{m}$$ (use $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$).
For a train engine moving with speed of $$20 \mathrm{~ms}^{-1}$$, the driver must apply brakes at a distance of 500 $$\mathrm{m}$$ before the station for the train to come to rest at the station. If the brakes were applied at half of this distance, the train engine would cross the station with speed $$\sqrt{x} \mathrm{~ms}^{-1}$$. The value of $$x$$ is ____________.
(Assuming same retardation is produced by brakes)