Space between the plates of a parallel plate capacitor of plate area 4 cm2 and separation of 1.77 mm, is filled with uniform dielectric materials with dielectric constants (3 and 5) as shown in figure. Another capacitor of capacitance 7.5 pF is connected in parallel with it. The effective capacitance of this combination is _ pF.
(Given $ \epsilon_0 = 8.85 \times 10^{-12} $ F/m)
A parallel plate capacitor consisting of two circular plates of radius 10 cm is being charged by a constant current of 0.15 A . If the rate of change of potential difference between the plates is $7 \times 10^8 \mathrm{~V} / \mathrm{s}$ then the integer value of the distance between the parallel plates is
$\left(\right.$ Take, $\left.\epsilon_0=9 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}, \pi=\frac{22}{7}\right)$ ____________ $\mu \mathrm{m}$.At steady state the charge on the capacitor, as shown in the circuit below, is _________ $\mu$C.
A capacitor of $$10 \mu \mathrm{F}$$ capacitance whose plates are separated by $$10 \mathrm{~mm}$$ through air and each plate has area $$4 \mathrm{~cm}^2$$ is now filled equally with two dielectric media of $$K_1=2, K_2=3$$ respectively as shown in figure. If new force between the plates is $$8 \mathrm{~N}$$. The supply voltage is ________ V.