A particle starts from origin at $$t=0$$ with a velocity $$5 \hat{i} \mathrm{~m} / \mathrm{s}$$ and moves in $$x-y$$ plane under action of a force which produces a constant acceleration of $$(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^2$$. If the $$x$$-coordinate of the particle at that instant is $$84 \mathrm{~m}$$, then the speed of the particle at this time is $$\sqrt{\alpha} \mathrm{~m} / \mathrm{s}$$. The value of $$\alpha$$ is _________.
A projectile fired at $$30^{\circ}$$ to the ground is observed to be at same height at time $$3 \mathrm{~s}$$ and $$5 \mathrm{~s}$$ after projection, during its flight. The speed of projection of the projectile is ___________ $$\mathrm{m} ~\mathrm{s}^{-1}$$.
(Given $$g=10 \mathrm{~ms}^{-2}$$ )
The speed of a swimmer is $$4 \mathrm{~km} \mathrm{~h}^{-1}$$ in still water. If the swimmer makes his strokes normal to the flow of river of width $$1 \mathrm{~km}$$, he reaches a point $$750 \mathrm{~m}$$ down the stream on the opposite bank.
The speed of the river water is ___________ $$\mathrm{km} ~\mathrm{h}^{-1}$$