1
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The state variable representation of a system is given as $$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 \cr 0 & { - 1} \cr } } \right]x;x\left( 0 \right) = \left[ {\matrix{ 1 \cr 0 \cr } } \right] \cr & y = \left[ {\matrix{ 0 & 1 \cr } } \right]x \cr} $$$

The response y(t) is

A
sin(t)
B
1-et
C
1-cos(t)
D
0
2
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A network is described by the state model as $$$\eqalign{ & {\mathop x\limits^ \bullet _1} = 2{x_1} - {x_2} + 3u, \cr & \mathop {{x_2}}\limits^ \bullet = - 4{x_2} - u, \cr & y = 3{x_1} - 2{x_2} \cr} $$$

the transfer function H(s)$$\left[ { = {{Y\left( s \right)} \over {U\left( s \right)}}} \right]is$$

A
$${{11s + 35} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
B
$${{11s - 35} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
C
$${{11s + 38} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
D
$${{11s - 38} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
3
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The state transition matrix $$\phi \left( t \right)$$ of a system $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] is$$$
A
$$\left[ {\matrix{ t & 1 \cr 1 & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr t & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 1 \cr 1 & t \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & t \cr 0 & 1 \cr } } \right]$$
4
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The state equation of a second-order linear system is given by $$\mathop x\limits^ \bullet \left( t \right) = Ax\left( t \right),x\left( 0 \right) = {x_0}.$$
For $${x_0} = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right]$$ and for $${x_0} = \left[ {\matrix{ 0 \cr 1 \cr } } \right],x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} & { - {e^{ - 2t}}} \cr { - {e^{ - t}}} & { + 2{e^{ - 2t}}} \cr } } \right]$$ when $${x_0} = \left[ {\matrix{ 3 \cr 5 \cr } } \right],x\left( t \right)$$ is
A
$$\left[ {\matrix{ { - 8{e^{ - t}}} & { + 11{e^{ - 2t}}} \cr {8{e^{ - t}}} & { - 22{e^{ - 2t}}} \cr } } \right]$$
B
$$\left[ {\matrix{ {11{e^{ - t}}} & { - 8{e^{ - 2t}}} \cr { - 11{e^{ - t}}} & { + 16{e^{ - 2t}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {3{e^{ - t}}} & { - 5{e^{ - 2t}}} \cr { - 3{e^{ - t}}} & { + 10{e^{ - 2t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {5{e^{ - t}}} & { - 3{e^{ - 2t}}} \cr { - 5{e^{ - t}}} & { + 6{e^{ - 2t}}} \cr } } \right]$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12