1
GATE ECE 2025
MCQ (Single Correct Answer)
+2
-0.67

Consider a system where $x_1(t), x_2(t)$, and $x_3(t)$ are three internal state signals and $u(t)$ is the input signal. The differential equations governing the system are given by

$$ \frac{d}{d t}\left[\begin{array}{l} x_1(t) \\ x_2(t) \\ x_3(t) \end{array}\right]=\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{l} x_1(t) \\ x_2(t) \\ x_3(t) \end{array}\right]+\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] u(t) $$

Which of the following statements is/are TRUE?

A
The signals $x_1(t), x_2(t)$, and $x_3(t)$ are bounded for all bounded inputs.
B
There exists a bounded input such that at least one of the signals $x_1(t), x_2(t)$, and $x_3(t)$ is unbounded.
C
There exists a bounded input such that the signals $x_1(t), x_2(t)$ and $x_3(t)$ are unbounded.
D
The signals $x_1(t), x_2(t)$ and $x_3(t)$ are unbounded for all bounded inputs.
2
GATE ECE 2024
MCQ (More than One Correct Answer)
+2
-0

Consider a system $S$ represented in state space as

$$\frac{dx}{dt} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}x + \begin{bmatrix} 1 \\ 0 \end{bmatrix}r , \quad y = \begin{bmatrix} 2 & -5 \end{bmatrix}x.$$

Which of the state space representations given below has/have the same transfer function as that of $S$?

A

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}r , \quad y = \begin{bmatrix} 1 & 2 \end{bmatrix}x.$$

B

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}x + \begin{bmatrix} 1 \\ 0 \end{bmatrix}r , \quad y = \begin{bmatrix} 0 & 2 \end{bmatrix}x.$$

C

$$\frac{dx}{dt} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}x + \begin{bmatrix} -1 \\ 3 \end{bmatrix}r , \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix}x.$$

D

$$\frac{dx}{dt} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}x + \begin{bmatrix} 1 \\ 1 \end{bmatrix}r , \quad y = \begin{bmatrix} 1 & 2 \end{bmatrix}x.$$

3
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
The state equation and the output equation of a control system are given below:

$$\mathop x\limits^. = \left[ {\matrix{ { - 4} & { - 1.5} \cr 4 & 0 \cr } } \right]x + \left[ {\matrix{ 2 \cr 0 \cr } } \right]u,$$

$$y = \left[ {\matrix{ {1.5} & {0.625} \cr } } \right]x.$$

The transfer function representation of the system is
A
$${{3s + 5} \over {{s^2} + 4s + 6}}$$
B
$${{3s - 1.875} \over {{s^2} + 4s + 6}}$$
C
$${{4s + 1.5} \over {{s^2} + 4s + 6}}$$
D
$${{6s + 5} \over {{s^2} + 4s + 6}}$$
4
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A second order LTI system is described by the following state equation. $$$\eqalign{ & {d \over {dt}}{x_1}\left( t \right) - {x_2}\left( t \right) = 0 \cr & {d \over {dt}}{x_2}\left( t \right) + 2{x_1}\left( t \right) + 3{x_2}\left( t \right) = r\left( t \right) \cr} $$$

When x1(t) and x2(t) are the two state variables and r(t) denotes the input. The output c(t)=X1(t). The systyem is

A
undamped (oscillatory)
B
under damped
C
critically damped
D
over damped
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12