1
GATE ECE 2004
+2
-0.6
If A = $$\left[ {\matrix{ { - 2} & 2 \cr 1 & { - 3} \cr } } \right],$$ then sin At is
A
$${1 \over 3}\left[ {\matrix{ {\sin \left( { - 4t} \right) + 2\sin \left( { - t} \right)} & { - 2\sin \left( { - 4t} \right) + 2\sin \left( { - t} \right)} \cr { - \sin \left( { - 4t} \right) + \sin \left( { - t} \right)} & {2\sin \left( { - 4t} \right) + \sin \left( { - t} \right)} \cr } } \right]$$
B
$$\left[ {\matrix{ {\sin \left( { - 2t} \right)} & {\sin \left( {2t} \right)} \cr {\sin \left( t \right)} & {\sin \left( { - 3t} \right)} \cr } } \right]$$
C
$${1 \over 3}\left[ {\matrix{ {\sin \left( {4t} \right) + 2\sin \left( t \right)} & {2\sin \left( { - 4t} \right) - 2\sin \left( { - t} \right)} \cr { - \sin \left( { - 4t} \right) + \sin \left( t \right)} & {2\sin \left( {4t} \right) + \sin \left( t \right)} \cr } } \right]$$
D
$${1 \over 3}\left[ {\matrix{ {\cos \left( { - t} \right) + 2\cos \left( t \right)} & {2\cos \left( { - 4t} \right) + 2\sin \left( { - t} \right)} \cr { - \cos \left( { - 4t} \right) + \sin \left( { - t} \right)} & { - 2\cos \left( { - 4t} \right) + \cos \left( { - t} \right)} \cr } } \right]$$
2
GATE ECE 2003
+2
-0.6
The zero, input response of a system given by the state space equation $$\left[ {{{\mathop {{x_1}}\limits^ \bullet } \over {\mathop {{x_2}}\limits^ \bullet }}} \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]and\left[ {\matrix{ {{x_1}} & {\left( 0 \right)} \cr {{x_2}} & {\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right]is$$$A $$\left[ {\matrix{ {t{e^t}} \cr t \cr } } \right]$$ B $$\left[ {\matrix{ {{e^t}} \cr t \cr } } \right]$$ C $$\left[ {\matrix{ {{e^t}} \cr {t{e^t}} \cr } } \right]$$ D $$\left[ {\matrix{ t \cr {t{e^t}} \cr } } \right]$$ 3 GATE ECE 1999 MCQ (Single Correct Answer) +2 -0.6 For the system described by the state equation $$\mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr {0.5} & 1 & 2 \cr } } \right]x + \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]u.$$$

If the control signal u is given by u=(-0.5-3-5)x+v, then the eigen values of the closed loop system will be

A
0, -1, -2
B
0, -1, -3
C
-1, -1, -2
D
0, -1, -1
4
GATE ECE 1997
+2
-0.6
A certain linear time invariant system has the state and the output equations given below $$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & { - 1} \cr 0 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u$$$$$y = \left[ {\matrix{ 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right], if$$$ $${x_1}\left( 0 \right) =1 ,{x_2}\left( 0 \right) = - 1,$$ $$u\left( 0 \right) = 0,$$ then $${{dy} \over {dt}}{|_{t = 0}}$$ is
A
1
B
-1
C
0
D
None of the above
EXAM MAP
Medical
NEET