1
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The block diagram of a system with one input u and two outputs y1 and y2 is given below GATE ECE 2011 Control Systems - State Space Analysis Question 23 English

A state space model of the above system in terms of the state vector $$\underline x $$ and the output vector $$\underline y = {\left[ {\matrix{ {{y_1}} & {{y_2}} \cr } } \right]^\tau }$$ is

A
$$\mathop {\underline x }\limits^ \bullet = \left[ 2 \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
B
$$\mathop {\underline x }\limits^ \bullet = \left[ { - 2} \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
C
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 2} \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
D
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ 2 & 0 \cr 0 & 2 \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below. GATE ECE 2010 Control Systems - State Space Analysis Question 25 English

The state variable representation of the system can be

A

$$\mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u$$
$$y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x$$
B
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x \cr} $$
C
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr} $$
D
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr} $$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below. GATE ECE 2010 Control Systems - State Space Analysis Question 24 English

The transfer function of the system is

A
$${{s + 1} \over {{s^2} + 1}}$$
B
$${{s - 1} \over {{s^2} + 1}}$$
C
$${{s + 1} \over {{s^2} + s + 1}}$$
D
$${{s - 1} \over {{s^2} + s + 1}}$$
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal flow graph of a system is given below. GATE ECE 2008 Control Systems - State Space Analysis Question 26 English

The set of equations that correspond to this signal flow graph is

A
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ \beta & { - \gamma } & 0 \cr \gamma & \alpha & 0 \cr { - \alpha } & { - \beta } & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr 0 & 1 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
B
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ 0 & \alpha & \gamma \cr 0 & { - \alpha } & { - \gamma } \cr 0 & \beta & { - \beta } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 0 \cr 0 & 1 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
C
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \alpha } & \beta & 0 \cr { - \beta } & { - \gamma } & 0 \cr \alpha & \gamma & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr 0 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
D
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \gamma } & 0 & \beta \cr \gamma & 0 & \alpha \cr { - \beta } & 0 & { - \alpha } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12