1
GATE ECE 2007
+2
-0.6
The state space representation of a separately excited DC servo motor dynamics is given as $$\left[ {\matrix{ {{{d\omega } \over {dt}}} \cr {{{d{i_a}} \over {dt}}} \cr } } \right] = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & { - 10} \cr } } \right]\left[ {\matrix{ \omega \cr {{i_a}} \cr } } \right] + \left[ {\matrix{ 0 \cr {10} \cr } } \right]u.$$$Where 'ω' is the speed of the motor, 'ia' is the armature current and u is the armature voltage. The transfer function $${{\omega \left( s \right)} \over {U\left( s \right)}}$$ of the motor is A $${{10} \over {{s^2} + 11s + 11}}$$ B $${1 \over {{s^2} + 11s + 11}}$$ C $${{10s + 10} \over {{s^2} + 11s + 11}}$$ D $${1 \over {{s^2} + s + 11}}$$ 2 GATE ECE 2007 MCQ (Single Correct Answer) +2 -0.6 Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$ If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$ then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$ If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$ then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$ The system matrix a is A $$\left[ {\matrix{ 0 & 1 \cr { - 1} & 1 \cr } } \right]$$ B $$\left[ {\matrix{ 1 & 1 \cr { - 1} & { - 2} \cr } } \right]$$ C $$\left[ {\matrix{ 2 & 1 \cr { - 1} & { - 1} \cr } } \right]$$ D $$\left[ {\matrix{ 0 & 1 \cr { - 2} & { - 3} \cr } } \right]$$ 3 GATE ECE 2007 MCQ (Single Correct Answer) +2 -0.6 Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$ If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$ then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$ If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$ then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$ The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are A $$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$ B $$\left[ { - 2,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 1,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$ C $$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ {2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$ D $$\left[ {1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$ 4 GATE ECE 2006 MCQ (Single Correct Answer) +2 -0.6 A linear system is described by the following state equation $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right) + BU\left( t \right),A = \left[ {\matrix{ 0 & 1 \cr { - 1} & 0 \cr } } \right].$$$
The state-transition matrix of the system is
A
$$\left[ {\matrix{ {\cos t} & {\sin t} \cr { - \sin t} & {\cos t} \cr } } \right]$$
B
$$\left[ {\matrix{ { - \cos t} & {\sin t} \cr { - \sin t} & { - \cos t} \cr } } \right]$$
C
$$\left[ {\matrix{ { - \cos t} & { - \sin t} \cr { - \sin t} & {\cos t} \cr } } \right]$$
D
$$\left[ {\matrix{ {\cos t} & { - \sin t} \cr {\cos t} & {\sin t} \cr } } \right]$$
EXAM MAP
Medical
NEET