1
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an LTI system is given by

where y is the output and u is input. The system is controllable for

A
$${a_1} \ne 0,{a_2} = 0,{a_3} \ne 0$$
B
$${a_1} = 0,{a_2} \ne 0,{a_3} \ne 0$$
C
$${a_1} = 0,{a_2} \ne 0,{a_3} = 0$$
D
$${a_1} \ne 0,{a_2} \ne 0,{a_3} = 0$$
2
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The block diagram of a system with one input u and two outputs y1 and y2 is given below

A state space model of the above system in terms of the state vector $$\underline x$$ and the output vector $$\underline y = {\left[ {\matrix{ {{y_1}} & {{y_2}} \cr } } \right]^\tau }$$ is

A
$$\mathop {\underline x }\limits^ \bullet = \left[ 2 \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
B
$$\mathop {\underline x }\limits^ \bullet = \left[ { - 2} \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
C
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 2} \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
D
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ 2 & 0 \cr 0 & 2 \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below.

The state variable representation of the system can be

A

$$\mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u$$
$$y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x$$
B
\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x \cr}
C
\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr}
D
\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr}
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below.

The transfer function of the system is

A
$${{s + 1} \over {{s^2} + 1}}$$
B
$${{s - 1} \over {{s^2} + 1}}$$
C
$${{s + 1} \over {{s^2} + s + 1}}$$
D
$${{s - 1} \over {{s^2} + s + 1}}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12