1
GATE ECE 2014 Set 1
+2
-0.6
Consider the state space model of a system, as given below

The system is

A
controllable and observable.
B
uncontrollable and observable.
C
uncontrollable and unobservable.
D
controllable and unobservable.
2
GATE ECE 2013
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations

The state transition matrix eAt of the system shown in the figure above is

A
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$ v
B
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr { - t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{e^{ - t}}} & { - t{e^{ - t}}} \cr 0 & {{e^{ - t}}} \cr } } \right]$$
3
GATE ECE 2013
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations

The state-variable equations of the system shown in the figure above are

A
\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X + u \cr}
B
\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X + u \cr}
C
\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X - u \cr}
D
\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & { - 1} \cr 0 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X - u \cr}
4
GATE ECE 2012
+2
-0.6
The state variable description of an LTI system is given by

where y is the output and u is input. The system is controllable for

A
$${a_1} \ne 0,{a_2} = 0,{a_3} \ne 0$$
B
$${a_1} = 0,{a_2} \ne 0,{a_3} \ne 0$$
C
$${a_1} = 0,{a_2} \ne 0,{a_3} = 0$$
D
$${a_1} \ne 0,{a_2} \ne 0,{a_3} = 0$$
EXAM MAP
Medical
NEET