1
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The state transition matrix $$\phi \left( t \right)$$ of a system $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] is$$$
A
$$\left[ {\matrix{ t & 1 \cr 1 & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr t & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 0 & 1 \cr 1 & t \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & t \cr 0 & 1 \cr } } \right]$$
2
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
The state equation of a second-order linear system is given by $$\mathop x\limits^ \bullet \left( t \right) = Ax\left( t \right),x\left( 0 \right) = {x_0}.$$
For $${x_0} = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right]$$ and for $${x_0} = \left[ {\matrix{ 0 \cr 1 \cr } } \right],x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} & { - {e^{ - 2t}}} \cr { - {e^{ - t}}} & { + 2{e^{ - 2t}}} \cr } } \right]$$ when $${x_0} = \left[ {\matrix{ 3 \cr 5 \cr } } \right],x\left( t \right)$$ is
A
$$\left[ {\matrix{ { - 8{e^{ - t}}} & { + 11{e^{ - 2t}}} \cr {8{e^{ - t}}} & { - 22{e^{ - 2t}}} \cr } } \right]$$
B
$$\left[ {\matrix{ {11{e^{ - t}}} & { - 8{e^{ - 2t}}} \cr { - 11{e^{ - t}}} & { + 16{e^{ - 2t}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {3{e^{ - t}}} & { - 5{e^{ - 2t}}} \cr { - 3{e^{ - t}}} & { + 10{e^{ - 2t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {5{e^{ - t}}} & { - 3{e^{ - 2t}}} \cr { - 5{e^{ - t}}} & { + 6{e^{ - 2t}}} \cr } } \right]$$
3
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider the state space system expressed by the signal flow diagram shown in the figure. GATE ECE 2014 Set 2 Control Systems - State Space Analysis Question 17 English

The corresponding system is

A
always controllable
B
always observable
C
always stable
D
always unstable
4
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
An unforced linear time invariant (LTI) system is represented by $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 1} & 0 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right].$$$

If the initial conditions are x1(0)= 1 and x2(0)=-1, the solution of the state equation is

A
$${x_1}\left( t \right) = - 1,{x_2}\left( t \right) = 2$$
B
$${x_1}\left( t \right) = - {e^{ - t}},{x_2}\left( t \right) = 2{e^{ - t}}$$
C
$${x_1}\left( t \right) = {e^{ - t}},{x_2}\left( t \right) = - {e^{ - 2t}}$$
D
$${x_1}\left( t \right) = {e^{ - t}},{x_2}\left( t \right) = - 2{e^{ - t}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12