1
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
The state equation and the output equation of a control system are given below:

$$\mathop x\limits^. = \left[ {\matrix{ { - 4} & { - 1.5} \cr 4 & 0 \cr } } \right]x + \left[ {\matrix{ 2 \cr 0 \cr } } \right]u,$$

$$y = \left[ {\matrix{ {1.5} & {0.625} \cr } } \right]x.$$

The transfer function representation of the system is
A
$${{3s + 5} \over {{s^2} + 4s + 6}}$$
B
$${{3s - 1.875} \over {{s^2} + 4s + 6}}$$
C
$${{4s + 1.5} \over {{s^2} + 4s + 6}}$$
D
$${{6s + 5} \over {{s^2} + 4s + 6}}$$
2
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A second order LTI system is described by the following state equation. $$$\eqalign{ & {d \over {dt}}{x_1}\left( t \right) - {x_2}\left( t \right) = 0 \cr & {d \over {dt}}{x_2}\left( t \right) + 2{x_1}\left( t \right) + 3{x_2}\left( t \right) = r\left( t \right) \cr} $$$

When x1(t) and x2(t) are the two state variables and r(t) denotes the input. The output c(t)=X1(t). The systyem is

A
undamped (oscillatory)
B
under damped
C
critically damped
D
over damped
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A second-order linear time-invariant system is described by the following state equations $$$\eqalign{& {d \over {dt}}{x_1}\left( t \right) + 2{x_1}\left( t \right) = 3u\left( t \right) \cr & {d \over {dt}}{x_2}\left( t \right) + {x_2}\left( t \right) = u\left( t \right) \cr} $$$

Where x1(t), then the system is

A
controllable but not observable
B
observable but not controllable
C
both controllable and observable
D
neither controllable nor observable
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The state variable representation of a system is given as $$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 \cr 0 & { - 1} \cr } } \right]x;x\left( 0 \right) = \left[ {\matrix{ 1 \cr 0 \cr } } \right] \cr & y = \left[ {\matrix{ 0 & 1 \cr } } \right]x \cr} $$$

The response y(t) is

A
sin(t)
B
1-et
C
1-cos(t)
D
0
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12