1
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal flow graph of a system is given below. GATE ECE 2008 Control Systems - State Space Analysis Question 26 English

The set of equations that correspond to this signal flow graph is

A
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ \beta & { - \gamma } & 0 \cr \gamma & \alpha & 0 \cr { - \alpha } & { - \beta } & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr 0 & 1 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
B
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ 0 & \alpha & \gamma \cr 0 & { - \alpha } & { - \gamma } \cr 0 & \beta & { - \beta } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 0 \cr 0 & 1 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
C
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \alpha } & \beta & 0 \cr { - \beta } & { - \gamma } & 0 \cr \alpha & \gamma & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr 0 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
D
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \gamma } & 0 & \beta \cr \gamma & 0 & \alpha \cr { - \beta } & 0 & { - \alpha } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are

A
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
B
$$\left[ { - 2,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 1,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
C
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ {2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
D
$$\left[ {1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The system matrix a is

A
$$\left[ {\matrix{ 0 & 1 \cr { - 1} & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 1 \cr { - 1} & { - 2} \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 1 \cr { - 1} & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 1 \cr { - 2} & { - 3} \cr } } \right]$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The state space representation of a separately excited DC servo motor dynamics is given as $$$\left[ {\matrix{ {{{d\omega } \over {dt}}} \cr {{{d{i_a}} \over {dt}}} \cr } } \right] = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & { - 10} \cr } } \right]\left[ {\matrix{ \omega \cr {{i_a}} \cr } } \right] + \left[ {\matrix{ 0 \cr {10} \cr } } \right]u.$$$

Where 'ω' is the speed of the motor, 'ia' is the armature current and u is the armature voltage. The transfer function $${{\omega \left( s \right)} \over {U\left( s \right)}}$$ of the motor is

A
$${{10} \over {{s^2} + 11s + 11}}$$
B
$${1 \over {{s^2} + 11s + 11}}$$
C
$${{10s + 10} \over {{s^2} + 11s + 11}}$$
D
$${1 \over {{s^2} + s + 11}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12