1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The zero, input response of a system given by the state space equation $$$\left[ {{{\mathop {{x_1}}\limits^ \bullet } \over {\mathop {{x_2}}\limits^ \bullet }}} \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]and\left[ {\matrix{ {{x_1}} & {\left( 0 \right)} \cr {{x_2}} & {\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right]is$$$
A
$$\left[ {\matrix{ {t{e^t}} \cr t \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} \cr t \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^t}} \cr {t{e^t}} \cr } } \right]$$
D
$$\left[ {\matrix{ t \cr {t{e^t}} \cr } } \right]$$
2
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
For the system described by the state equation $$$\mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr {0.5} & 1 & 2 \cr } } \right]x + \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]u.$$$


If the control signal u is given by u=(-0.5-3-5)x+v, then the eigen values of the closed loop system will be

A
0, -1, -2
B
0, -1, -3
C
-1, -1, -2
D
0, -1, -1
3
GATE ECE 1997
MCQ (Single Correct Answer)
+2
-0.6
A certain linear time invariant system has the state and the output equations given below $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & { - 1} \cr 0 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u$$$ $$$y = \left[ {\matrix{ 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right], if$$$ $${x_1}\left( 0 \right) =1 ,{x_2}\left( 0 \right) = - 1,$$ $$u\left( 0 \right) = 0,$$ then $${{dy} \over {dt}}{|_{t = 0}}$$ is
A
1
B
-1
C
0
D
None of the above
4
GATE ECE 1992
MCQ (More than One Correct Answer)
+2
-0
A linear time-invariant system is described by the state variable model $$$\left[ {\matrix{ {{{\mathop x\limits^ \bullet }_1}} \cr {{{\mathop x\limits^ \bullet }_2}} \cr } } \right] = \left[ {\matrix{ { - 1} & 0 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u.$$$ $$$Y = \left[ {\matrix{ 1 & 2 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]$$$
A
The system is completely controllable
B
The system is not completely controllable
C
The system is completely observable
D
The system is not completely observable
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12