1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The zero, input response of a system given by the state space equation
$$$\left[ {{{\mathop {{x_1}}\limits^ \bullet } \over {\mathop {{x_2}}\limits^ \bullet }}} \right] = \left[ {\matrix{
1 & 0 \cr
1 & 1 \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right]and\left[ {\matrix{
{{x_1}} & {\left( 0 \right)} \cr
{{x_2}} & {\left( 0 \right)} \cr
} } \right] = \left[ {\matrix{
1 \cr
0 \cr
} } \right]is$$$
2
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
For the system described by the state
equation $$$\mathop x\limits^ \bullet = \left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
{0.5} & 1 & 2 \cr
} } \right]x + \left[ {\matrix{
0 \cr
0 \cr
1 \cr
} } \right]u.$$$
If the control signal u is given by u=(-0.5-3-5)x+v, then the eigen values of the closed loop system will be
3
GATE ECE 1997
MCQ (Single Correct Answer)
+2
-0.6
A certain linear time invariant system has the state and the output equations given below
$$$\left[ {\matrix{
{\mathop {{x_1}}\limits^ \bullet } \cr
{\mathop {{x_2}}\limits^ \bullet } \cr
} } \right] = \left[ {\matrix{
1 & { - 1} \cr
0 & 1 \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right] + \left[ {\matrix{
0 \cr
1 \cr
} } \right]u$$$
$$$y = \left[ {\matrix{
1 & 1 \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right], if$$$
$${x_1}\left( 0 \right) =1 ,{x_2}\left( 0 \right) = - 1,$$ $$u\left( 0 \right) = 0,$$ then $${{dy} \over {dt}}{|_{t = 0}}$$ is
4
GATE ECE 1992
MCQ (More than One Correct Answer)
+2
-0
A linear time-invariant system is described by the state variable model
$$$\left[ {\matrix{
{{{\mathop x\limits^ \bullet }_1}} \cr
{{{\mathop x\limits^ \bullet }_2}} \cr
} } \right] = \left[ {\matrix{
{ - 1} & 0 \cr
0 & { - 2} \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right] + \left[ {\matrix{
0 \cr
1 \cr
} } \right]u.$$$
$$$Y = \left[ {\matrix{
1 & 2 \cr
} } \right]\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
} } \right]$$$
Questions Asked from State Space Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2018 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (2)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (2)
GATE ECE 2008 (1)
GATE ECE 2007 (3)
GATE ECE 2006 (1)
GATE ECE 2004 (3)
GATE ECE 2003 (1)
GATE ECE 1999 (1)
GATE ECE 1997 (1)
GATE ECE 1992 (1)
GATE ECE 1991 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude