1
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below. GATE ECE 2010 Control Systems - State Space Analysis Question 26 English

The state variable representation of the system can be

A

$$\mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u$$
$$y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x$$
B
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ 0 & {0.5} \cr } } \right]x \cr} $$
C
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 1 & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr} $$
D
$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & 0 \cr } } \right]x + \left[ {\matrix{ 0 \cr 2 \cr } } \right]u \cr & y = \left[ {\matrix{ {0.5} & {0.5} \cr } } \right]x \cr} $$
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The signal flow graph of a system is shown below. GATE ECE 2010 Control Systems - State Space Analysis Question 25 English

The transfer function of the system is

A
$${{s + 1} \over {{s^2} + 1}}$$
B
$${{s - 1} \over {{s^2} + 1}}$$
C
$${{s + 1} \over {{s^2} + s + 1}}$$
D
$${{s - 1} \over {{s^2} + s + 1}}$$
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal flow graph of a system is given below. GATE ECE 2008 Control Systems - State Space Analysis Question 27 English

The set of equations that correspond to this signal flow graph is

A
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ \beta & { - \gamma } & 0 \cr \gamma & \alpha & 0 \cr { - \alpha } & { - \beta } & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr 0 & 1 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
B
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ 0 & \alpha & \gamma \cr 0 & { - \alpha } & { - \gamma } \cr 0 & \beta & { - \beta } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 0 \cr 0 & 1 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
C
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \alpha } & \beta & 0 \cr { - \beta } & { - \gamma } & 0 \cr \alpha & \gamma & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr 0 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
D
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \gamma } & 0 & \beta \cr \gamma & 0 & \alpha \cr { - \beta } & 0 & { - \alpha } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The state space representation of a separately excited DC servo motor dynamics is given as $$$\left[ {\matrix{ {{{d\omega } \over {dt}}} \cr {{{d{i_a}} \over {dt}}} \cr } } \right] = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & { - 10} \cr } } \right]\left[ {\matrix{ \omega \cr {{i_a}} \cr } } \right] + \left[ {\matrix{ 0 \cr {10} \cr } } \right]u.$$$

Where 'ω' is the speed of the motor, 'ia' is the armature current and u is the armature voltage. The transfer function $${{\omega \left( s \right)} \over {U\left( s \right)}}$$ of the motor is

A
$${{10} \over {{s^2} + 11s + 11}}$$
B
$${1 \over {{s^2} + 11s + 11}}$$
C
$${{10s + 10} \over {{s^2} + 11s + 11}}$$
D
$${1 \over {{s^2} + s + 11}}$$
GATE ECE Subjects
EXAM MAP