1
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A second order LTI system is described by the following state equation. $$$\eqalign{ & {d \over {dt}}{x_1}\left( t \right) - {x_2}\left( t \right) = 0 \cr & {d \over {dt}}{x_2}\left( t \right) + 2{x_1}\left( t \right) + 3{x_2}\left( t \right) = r\left( t \right) \cr} $$$

When x1(t) and x2(t) are the two state variables and r(t) denotes the input. The output c(t)=X1(t). The systyem is

A
undamped (oscillatory)
B
under damped
C
critically damped
D
over damped
2
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A second-order linear time-invariant system is described by the following state equations $$$\eqalign{& {d \over {dt}}{x_1}\left( t \right) + 2{x_1}\left( t \right) = 3u\left( t \right) \cr & {d \over {dt}}{x_2}\left( t \right) + {x_2}\left( t \right) = u\left( t \right) \cr} $$$

Where x1(t), then the system is

A
controllable but not observable
B
observable but not controllable
C
both controllable and observable
D
neither controllable nor observable
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The state variable representation of a system is given as $$$\eqalign{ & \mathop x\limits^ \bullet = \left[ {\matrix{ 0 & 1 \cr 0 & { - 1} \cr } } \right]x;x\left( 0 \right) = \left[ {\matrix{ 1 \cr 0 \cr } } \right] \cr & y = \left[ {\matrix{ 0 & 1 \cr } } \right]x \cr} $$$

The response y(t) is

A
sin(t)
B
1-et
C
1-cos(t)
D
0
4
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A network is described by the state model as $$$\eqalign{ & {\mathop x\limits^ \bullet _1} = 2{x_1} - {x_2} + 3u, \cr & \mathop {{x_2}}\limits^ \bullet = - 4{x_2} - u, \cr & y = 3{x_1} - 2{x_2} \cr} $$$

the transfer function H(s)$$\left[ { = {{Y\left( s \right)} \over {U\left( s \right)}}} \right]is$$

A
$${{11s + 35} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
B
$${{11s - 35} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
C
$${{11s + 38} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
D
$${{11s - 38} \over {\left( {s - 2} \right)\left( {s + 4} \right)}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12