1
GATE ECE 2024
MCQ (More than One Correct Answer)
+2
-1.33
Consider a system $S$ represented in state space as
$$\frac{dx}{dt} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}x + \begin{bmatrix} 1 \\ 0 \end{bmatrix}r , \quad y = \begin{bmatrix} 2 & -5 \end{bmatrix}x.$$
Which of the state space representations given below has/have the same transfer function as that of $S$?
2
GATE ECE 2018
MCQ (Single Correct Answer)
+2
-0.67
The state equation and the output equation of a control system are given below:
$$\mathop x\limits^. = \left[ {\matrix{ { - 4} & { - 1.5} \cr 4 & 0 \cr } } \right]x + \left[ {\matrix{ 2 \cr 0 \cr } } \right]u,$$
$$y = \left[ {\matrix{ {1.5} & {0.625} \cr } } \right]x.$$
The transfer function representation of the system is
$$\mathop x\limits^. = \left[ {\matrix{ { - 4} & { - 1.5} \cr 4 & 0 \cr } } \right]x + \left[ {\matrix{ 2 \cr 0 \cr } } \right]u,$$
$$y = \left[ {\matrix{ {1.5} & {0.625} \cr } } \right]x.$$
The transfer function representation of the system is
3
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A second order LTI system is described by the following state equation.
$$$\eqalign{
& {d \over {dt}}{x_1}\left( t \right) - {x_2}\left( t \right) = 0 \cr
& {d \over {dt}}{x_2}\left( t \right) + 2{x_1}\left( t \right) + 3{x_2}\left( t \right) = r\left( t \right) \cr} $$$
When x1(t) and x2(t) are the two state variables and r(t) denotes the input. The output c(t)=X1(t). The systyem is
4
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A second-order linear time-invariant system is described by the following state equations
$$$\eqalign{& {d \over {dt}}{x_1}\left( t \right) + 2{x_1}\left( t \right) = 3u\left( t \right) \cr
& {d \over {dt}}{x_2}\left( t \right) + {x_2}\left( t \right) = u\left( t \right) \cr} $$$
Where x1(t), then the system is
Questions Asked from State Space Analysis (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2018 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (2)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (2)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (2)
GATE ECE 2008 (1)
GATE ECE 2007 (3)
GATE ECE 2006 (1)
GATE ECE 2004 (3)
GATE ECE 2003 (1)
GATE ECE 1999 (1)
GATE ECE 1997 (1)
GATE ECE 1992 (1)
GATE ECE 1991 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics