1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations GATE ECE 2013 Control Systems - State Space Analysis Question 20 English

The state-variable equations of the system shown in the figure above are

A
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X + u \cr} $$
B
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X + u \cr} $$
C
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X - u \cr} $$
D
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & { - 1} \cr 0 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X - u \cr} $$
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations GATE ECE 2013 Control Systems - State Space Analysis Question 19 English

The state transition matrix eAt of the system shown in the figure above is

A
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$ v
B
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr { - t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{e^{ - t}}} & { - t{e^{ - t}}} \cr 0 & {{e^{ - t}}} \cr } } \right]$$
3
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an LTI system is given by GATE ECE 2012 Control Systems - State Space Analysis Question 21 English

where y is the output and u is input. The system is controllable for

A
$${a_1} \ne 0,{a_2} = 0,{a_3} \ne 0$$
B
$${a_1} = 0,{a_2} \ne 0,{a_3} \ne 0$$
C
$${a_1} = 0,{a_2} \ne 0,{a_3} = 0$$
D
$${a_1} \ne 0,{a_2} \ne 0,{a_3} = 0$$
4
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The block diagram of a system with one input u and two outputs y1 and y2 is given below GATE ECE 2011 Control Systems - State Space Analysis Question 22 English

A state space model of the above system in terms of the state vector $$\underline x $$ and the output vector $$\underline y = {\left[ {\matrix{ {{y_1}} & {{y_2}} \cr } } \right]^\tau }$$ is

A
$$\mathop {\underline x }\limits^ \bullet = \left[ 2 \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
B
$$\mathop {\underline x }\limits^ \bullet = \left[ { - 2} \right]\underline x + \left[ 1 \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
C
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ { - 2} & 0 \cr 0 & { - 2} \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 & 2 \cr } } \right]x$$
D
$$\mathop {\underline x }\limits^ \bullet = \left[ {\matrix{ 2 & 0 \cr 0 & 2 \cr } } \right]\underline x + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\underline y = \left[ {\matrix{ 1 \cr 2 \cr } } \right]x$$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12