1
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
An unforced linear time invariant (LTI) system is represented by $$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ { - 1} & 0 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right].$$$

If the initial conditions are x1(0)= 1 and x2(0)=-1, the solution of the state equation is

A
$${x_1}\left( t \right) = - 1,{x_2}\left( t \right) = 2$$
B
$${x_1}\left( t \right) = - {e^{ - t}},{x_2}\left( t \right) = 2{e^{ - t}}$$
C
$${x_1}\left( t \right) = {e^{ - t}},{x_2}\left( t \right) = - {e^{ - 2t}}$$
D
$${x_1}\left( t \right) = {e^{ - t}},{x_2}\left( t \right) = - 2{e^{ - t}}$$
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations GATE ECE 2013 Control Systems - State Space Analysis Question 20 English

The state transition matrix eAt of the system shown in the figure above is

A
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$ v
B
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr { - t{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^{ - t}}} & 0 \cr {{e^{ - t}}} & {{e^{ - t}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{e^{ - t}}} & { - t{e^{ - t}}} \cr 0 & {{e^{ - t}}} \cr } } \right]$$
3
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The state diagram of a system is shown below. A system is shown below. A system is described by the state variable equations GATE ECE 2013 Control Systems - State Space Analysis Question 21 English

The state-variable equations of the system shown in the figure above are

A
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr 1 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X + u \cr} $$
B
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X + u \cr} $$
C
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & 0 \cr { - 1} & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ { - 1} & { - 1} \cr } } \right]X - u \cr} $$
D
$$\eqalign{ & \mathop X\limits^ \bullet = \left[ {\matrix{ { - 1} & { - 1} \cr 0 & { - 1} \cr } } \right]X + \left[ {\matrix{ { - 1} \cr 1 \cr } } \right]u \cr & y = \left[ {\matrix{ 1 & { - 1} \cr } } \right]X - u \cr} $$
4
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The state variable description of an LTI system is given by GATE ECE 2012 Control Systems - State Space Analysis Question 22 English

where y is the output and u is input. The system is controllable for

A
$${a_1} \ne 0,{a_2} = 0,{a_3} \ne 0$$
B
$${a_1} = 0,{a_2} \ne 0,{a_3} \ne 0$$
C
$${a_1} = 0,{a_2} \ne 0,{a_3} = 0$$
D
$${a_1} \ne 0,{a_2} \ne 0,{a_3} = 0$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12