1
IIT-JEE 1996
Subjective
+3
-0
Using mathematical induction prove that for every integer $$n \ge 1,\,\,\left( {{3^{2n}} - 1} \right)$$ is divisible by $${2^{n + 2}}$$ but not by $${2^{n + 3}}$$.
2
IIT-JEE 1994
Subjective
+4
-0
If $$x$$ is not an integral multiple of $$2\pi $$ use mathematical induction to prove that : $$$\cos x + \cos 2x + .......... + \cos nx = \cos {{n + 1} \over 2}x\sin {{nx} \over 2}\cos ec{x \over 2}$$$
3
IIT-JEE 1994
Subjective
+5
-0
Let $$n$$ be a positive integer and $${\left( {1 + x + {x^2}} \right)^n} = {a_0} + {a_1}x + ............ + {a_{2n}}{x^{2n}}$$
Show that $$a_0^2 - a_1^2 + a_2^2...... + {a_{2n}}{}^2 = {a_n}$$
4
IIT-JEE 1993
Subjective
+5
-0
Prove that $$\sum\limits_{r = 1}^k {{{\left( { - 3} \right)}^{r - 1}}\,\,{}^{3n}{C_{2r - 1}} = 0,} $$ where $$k = \left( {3n} \right)/2$$ and $$n$$ is an even positive integer.
JEE Advanced Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN