MCQ (More than One Correct Answer)

1
A straight line drawn from the point $P(1,3,2)$, parallel to the line $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{1}$, intersects the plane $L_1: x-y+3 z=6$ at the point $Q$. Another straight line which passes through $Q$ and is perpendicular to the plane $L_1$ intersects the plane $L_2: 2 x-y+z=-4$ at the point $R$. Then which of the following statements is (are) TRUE?
JEE Advanced 2024 Paper 2 Online
2

Let $\mathbb{R}^3$ denote the three-dimensional space. Take two points $P=(1,2,3)$ and $Q=(4,2,7)$. Let $\operatorname{dist}(X, Y)$ denote the distance between two points $X$ and $Y$ in $\mathbb{R}^3$. Let

$$ \begin{gathered} S=\left\{X \in \mathbb{R}^3:(\operatorname{dist}(X, P))^2-(\operatorname{dist}(X, Q))^2=50\right\} \text { and } \\ T=\left\{Y \in \mathbb{R}^3:(\operatorname{dist}(Y, Q))^2-(\operatorname{dist}(Y, P))^2=50\right\} . \end{gathered} $$

Then which of the following statements is (are) TRUE?

JEE Advanced 2024 Paper 1 Online
3
Let $$P_{1}$$ and $$P_{2}$$ be two planes given by

$$ \begin{aligned} &P_{1}: 10 x+15 y+12 z-60=0 \\\\ &P_{2}:-2 x+5 y+4 z-20=0 \end{aligned} $$

Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on $$P_{1}$$ and $$P_{2}$$ ?
JEE Advanced 2022 Paper 1 Online
4
Let $$S$$ be the reflection of a point $$Q$$ with respect to the plane given by

$$ \vec{r}=-(t+p) \hat{\imath}+t \hat{\jmath}+(1+p) \hat{k} $$

where $$t, p$$ are real parameters and $$\hat{\imath}, \hat{\jmath}, \hat{k}$$ are the unit vectors along the three positive coordinate axes. If the position vectors of $$Q$$ and $$S$$ are $$10 \hat{\imath}+15 \hat{\jmath}+20 \hat{k}$$ and $$\alpha \hat{\imath}+\beta \hat{\jmath}+\gamma \hat{k}$$ respectively, then which of the following is/are TRUE ?
JEE Advanced 2022 Paper 1 Online
5
Let $$\alpha $$2 + $$\beta $$2 + $$\gamma $$2 $$ \ne $$ 0 and $$\alpha $$ + $$\gamma $$ = 1. Suppose the point (3, 2, $$-$$1) is the mirror image of the point (1, 0, $$-$$1) with respect to the plane $$\alpha $$x + $$\beta $$y + $$\gamma $$z = $$\delta $$. Then which of the following statements is/are TRUE?
JEE Advanced 2020 Paper 2 Offline
6
Let L1 and L2 be the following straight lines.

$${L_1}:{{x - 1} \over 1} = {y \over { - 1}} = {{z - 1} \over 3}$$ and $${L_2}:{{x - 1} \over { - 3}} = {y \over { - 1}} = {{z - 1} \over 1}$$.

Suppose the straight line

$$L:{{x - \alpha } \over l} = {{y - 1} \over m} = {{z - \gamma } \over { - 2}}$$

lies in the plane containing L1 and L2 and passes through the point of intersection of L1 and L2. If the line L bisects the acute angle between the lines L1 and L2, then which of the following statements is/are TRUE?
JEE Advanced 2020 Paper 1 Offline
7
Three lines $${L_1}:r = \lambda \widehat i$$, $$\lambda $$ $$ \in $$ R,

$${L_2}:r = \widehat k + \mu \widehat j$$, $$\mu $$ $$ \in $$ R and

$${L_3}:r = \widehat i + \widehat j + v\widehat k$$, v $$ \in $$ R are given.

For which point(s) Q on L2 can we find a point P on L1 and a point R on L3 so that P, Q and R are collinear?
JEE Advanced 2019 Paper 2 Offline
8
Let L1 and L2 denote the lines

$$r = \widehat i + \lambda ( - \widehat i + 2\widehat j + 2\widehat k)$$, $$\lambda $$$$ \in $$ R

and $$r = \mu (2\widehat i - \widehat j + 2\widehat k),\,\mu \in R$$

respectively. If L3 is a line which is perpendicular to both L1 and L2 and cuts both of them, then which of the following options describe(s) L3?
JEE Advanced 2019 Paper 1 Offline
9
Let P1 : 2x + y $$-$$ z = 3 and P2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is(are) TRUE?
JEE Advanced 2018 Paper 1 Offline
10
Consider a pyramid $$OPQRS$$ located in the first octant $$\left( {x \ge 0,y \ge 0,z \ge 0} \right)$$ with $$O$$ as origin, and $$OP$$ and $$OR$$ along the $$x$$-axis and the $$y$$-axis, respectively. The base $$OPQR$$ of the pyramid is a square with $$OP=3.$$ The point $$S$$ is directly above the mid-point, $$T$$ of diagonal $$OQ$$ such that $$TS=3.$$ Then
JEE Advanced 2016 Paper 1 Offline
11
In $${R^3},$$ let $$L$$ be a straight lines passing through the origin. Suppose that all the points on $$L$$ are at a constant distance from the two planes $${P_1}:x + 2y - z + 1 = 0$$ and $${P_2}:2x - y + z - 1 = 0.$$ Let $$M$$ be the locus of the feet of the perpendiculars drawn from the points on $$L$$ to the plane $${P_1}.$$ Which of the following points lie (s) on $$M$$?
JEE Advanced 2015 Paper 1 Offline
12
In $${R^3},$$ consider the planes $$\,{P_1}:y = 0$$ and $${P_2}:x + z = 1.$$ Let $${P_3}$$ be the plane, different from $${P_1}$$ and $${P_2}$$, which passes through the intersection of $${P_1}$$ and $${P_2}.$$ If the distance of the point $$(0,1, 0)$$ from $${P_3}$$ is $$1$$ and the distance of a point $$\left( {\alpha ,\beta ,\gamma } \right)$$ from $${P_3}$$ is $$2,$$ then which of the following relations is (are) true?
JEE Advanced 2015 Paper 1 Offline
13
From a point $$P\left( {\lambda ,\lambda ,\lambda } \right),$$ perpendicular $$PQ$$ and $$PR$$ are drawn respectively on the lines $$y=x, z=1$$ and $$y=-x, z=-1.$$ If $$P$$ is such that $$\angle QPR$$ is a right angle, then the possible value(s) of $$\lambda $$ is/(are)
JEE Advanced 2014 Paper 1 Offline
14
Two lines $${L_1}:x = 5,{y \over {3 - \alpha }} = {z \over { - 2}}$$ and $${L_2}:x = \alpha ,{y \over { - 1}} = {z \over {2 - \alpha }}$$ are coplanar. Then $$\alpha $$ can take value(s)
JEE Advanced 2013 Paper 2 Offline
15
A line $$l$$ passing through the origin is perpendicular to the lines $$$\,{l_1}:\left( {3 + t} \right)\widehat i + \left( { - 1 + 2t} \right)\widehat j + \left( {4 + 2t} \right)\widehat k,\,\,\,\,\, - \infty < t < \infty $$$ $$${l_2}:\left( {3 + 2s} \right)\widehat i + \left( {3 + 2s} \right)\widehat j + \left( {2 + s} \right)\widehat k,\,\,\,\,\, - \infty < s < \infty $$$
Then, the coordinate(s) of the points(s) on $${l_2}$$ at a distance of $$\sqrt {17} $$ from the point of intersection of $$l$$ and $${l_1}$$ is (are)
JEE Advanced 2013 Paper 1 Offline
16
If the straight lines $$\,{{x - 1} \over 2} = {{y + 1} \over k} = {z \over 2}$$ and $${{x + 1} \over 5} = {{y + 1} \over 2} = {z \over k}$$ are coplanar, then the plane (s) containing these two lines is (are)
IIT-JEE 2012 Paper 2 Offline
17
Let $${\overrightarrow A }$$ be vector parallel to line of intersection of planes $${P_1}$$ and $${P_2}.$$ Planes $${P_1}$$ is parallel to the vectors $$2\widehat j + 3\widehat k$$ and $$4\widehat j - 3\widehat k$$ and that $${P_2}$$ is parallel to $$\widehat j - \widehat k$$ and $$3\widehat i + 3\widehat j,$$ then the angle between vector $${\overrightarrow A }$$ and a given vector $$2\widehat i + \widehat j - 2\widehat k$$ is
IIT-JEE 2006

MCQ (Single Correct Answer)

1

Let $\gamma \in \mathbb{R}$ be such that the lines $L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}$ and $L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}$ intersect. Let $R_1$ be the point of intersection of $L_1$ and $L_2$. Let $O=(0,0,0)$, and $\hat{n}$ denote a unit normal vector to the plane containing both the lines $L_1$ and $L_2$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\gamma$ equals (1) $-\hat{i} - \hat{j} + \hat{k}$
(Q) A possible choice for $\hat{n}$ is (2) $\sqrt{\frac{3}{2}}$
(R) $\overrightarrow{OR_1}$ equals (3) $1$
(S) A possible value of $\overrightarrow{OR_1} \cdot \hat{n}$ is (4) $\frac{1}{\sqrt{6}} \hat{i} - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k}$
(5) $\sqrt{\frac{2}{3}}$

The correct option is :
JEE Advanced 2024 Paper 1 Online
2
Let $\ell_1$ and $\ell_2$ be the lines $\vec{r}_1=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_2=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_1$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_2$ and $H$. Let $H_0$ be a plane in $X$ for which $d\left(H_0\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The value of $d\left(H_0\right)$ is (1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from $H_0$ is (2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from $H_0$ is (3) 0
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_0$ is (4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
JEE Advanced 2023 Paper 1 Online
3
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
JEE Advanced 2017 Paper 2 Offline
4
Let $$P$$ be the image of the point $$(3,1,7)$$ with respect to the plane $$x-y+z=3.$$ Then the equation of the plane passing through $$P$$ and containing the straight line $${x \over 1} = {y \over 2} = {z \over 1}$$ is
JEE Advanced 2016 Paper 2 Offline
5
Consider the lines

$${L_1}:{{x - 1} \over 2} = {y \over { - 1}} = {{z + 3} \over 1},{L_2} : {{x - 4} \over 1} = {{y + 3} \over 1} = {{z + 3} \over 2}$$

and the planes $${P_1}:7x + y + 2z = 3,{P_2} = 3x + 5y - 6z = 4.$$ Let $$ax+by+cz=d$$ be the equation of the plane passing through the point of intersection of lines $${L_1}$$ and $${L_2},$$ and perpendicular to planes $${P_1}$$ and $${P_2}.$$

Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:
List $$I$$
(P.) $$a=$$
(Q.) $$b=$$
(R.) $$c=$$
(S.) $$d=$$

List $$II$$
(1.) $$13$$
(2.) $$-3$$
(3.) $$1$$
(4.) $$-2$$

JEE Advanced 2013 Paper 2 Offline
6
Perpendiculars are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+$ $z=3$. The foot of perpendiculars lie on the line
JEE Advanced 2013 Paper 1 Offline
7
The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$ and $$x-y+z=3$$ and at a distance $${2 \over {\sqrt 3 }}$$ from the point $$(3, 1, -1)$$ is
IIT-JEE 2012 Paper 2 Offline
8
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the point $$T(2, 1, 4)$$ to $$QR,$$ then the length of the line segment $$PS$$ is
IIT-JEE 2012 Paper 1 Offline
9
Equation of the plane containing the straight line $${x \over 2} = {y \over 3} = {z \over 4}$$ and perpendicular to the plane containing the straight lines $${x \over 3} = {y \over 4} = {z \over 2}$$ and $${x \over 4} = {y \over 2} = {z \over 3}$$ is
IIT-JEE 2010 Paper 1 Offline
10
Match the statement in Column-$$I$$ with the values in Column-$$II$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$

IIT-JEE 2010 Paper 2 Offline
11
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
IIT-JEE 2010 Paper 2 Offline
12

A line with positive direction cosines passes through the point P(2, $$-$$1, 2) and makes equal angles with the coordinate axes. The line meets the plane $$2x + y + z = 9$$ at point Q. The length of the line segment PQ equals

IIT-JEE 2009 Paper 2 Offline
13
Let $$P(3,2,6)$$ be a point in space and $$Q$$ be a point on the line $$$\widehat r = \left( {\widehat i - \widehat j + 2\widehat k} \right) + \mu \left( { - 3\widehat i + \widehat j + 5\widehat k} \right)$$$

Then the value of $$\mu $$ for which the vector $${\overrightarrow {PQ} }$$ is parallel to the plane $$x - 4y + 3z = 1$$ is :

IIT-JEE 2009 Paper 1 Offline
14
The distance of the point $$(1, 1, 1)$$ from the plane passing through the point $$(-1, -2, -1)$$ and whose normal is perpendicular to both the lines $${L_1}$$ and $${L_2}$$ is :
IIT-JEE 2008 Paper 2 Offline
15
Consider three planes $$${P_1}:x - y + z = 1$$$ $$${P_2}:x + y - z = 1$$$ $$${P_3}:x - 3y + 3z = 2$$$

Let $${L_1},$$ $${L_2},$$ $${L_3}$$ be the lines of intersection of the planes $${P_2}$$ and $${P_3},$$ $${P_3}$$ and $${P_1},$$ $${P_1}$$ and $${P_2},$$ respectively.

STATEMENT - 1Z: At least two of the lines $${L_1},$$ $${L_2}$$ and $${L_3}$$ are non-parallel and

STATEMENT - 2: The three planes doe not have a common point.

IIT-JEE 2008 Paper 1 Offline
16
Consider the planes $$3x-6y-2z=15$$ and $$2x+y-2z=5.$$

STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=3+14t,y=1+2t,z=15t.$$ because

STATEMENT-2: The vector $${14\widehat i + 2\widehat j + 15\widehat k}$$ is parallel to the line of intersection of given planes.

IIT-JEE 2007
17
A plane which is perpendicular to two planes $$2x - 2y + z = 0$$ and $$x - y + 2z = 4,$$ passes through $$(1, -2, 1).$$ The distance of the plane from the point $$(1, 2, 2)$$ is
IIT-JEE 2006
18
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,$$ $$B$$ and $$C.$$ If the centroid $$D$$ $$(x, y, z)$$ of triangle $$ABC$$ satisfies the relation $${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = k,$$ then the value $$k$$ is
IIT-JEE 2005 Screening
19
If the lines $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $$\,{{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, then the value of $$k$$ is
IIT-JEE 2004 Screening
20
The value of $$k$$ such that $${{x - 4} \over 1} = {{y - 2} \over 1} = {{z - k} \over 2}$$ lies in the plane $$2x -4y +z = 7,$$ is
IIT-JEE 2003 Screening
21
Let $$\alpha ,\beta ,\gamma $$ be distinct real numbers. The points with position
vectors $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k,\,\,\beta \widehat i + \gamma \widehat j + \alpha \widehat k,\,\,\gamma \widehat i + \alpha \widehat j + \beta \widehat k$$
IIT-JEE 1994
22
Let $$\overrightarrow p $$ and $$\overrightarrow q $$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\overrightarrow p } \right| = p,\left| {\overrightarrow q } \right| = q.$$ The points $$R$$ and $$S$$ divide $$PQ$$ internally and externally in the ratio $$2:3$$ respectively. If $$OR$$ and $$OS$$ are perpendicular then
IIT-JEE 1994
23
The points with position vectors $$60i+3j,$$ $$40i-8j,$$ $$ai-52j$$ are collinear if
IIT-JEE 1983
24
The volume of the parallelopiped whose sides are given by
$$\overrightarrow {OA} = 2i - 2j,\,\overrightarrow {OB} = i + j - k,\,\overrightarrow {OC} = 3i - k,$$ is
IIT-JEE 1983

Numerical

1
Three lines are given by

$$r = \lambda \widehat i,\,\lambda \in R$$,

$$r = \mu (\widehat i + \widehat j),\,\mu \in R$$ and

$$r = v(\widehat i + \widehat j + \widehat k),\,v\, \in R$$

Let the lines cut the plane x + y + z = 1 at the points A, B and C respectively. If the area of the triangle ABC is $$\Delta $$ then the value of (6$$\Delta $$)2 equals ..............
JEE Advanced 2019 Paper 1 Offline
2
Let P be a point in the first octant, whose image Q in the plane x + y = 3 (that is, the line segment PQ is perpendicular to the plane x + y = 3 and the mid-point of PQ lies in the plane x + y = 3) lies on the Z-axis. Let the distance of P from the X-axis be 5. If R is the image of P in the XY-plane, then the length of PR is ...............
JEE Advanced 2018 Paper 2 Offline
3
Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the X-axis, Y-axis and Z-axis, respectively, where O(0, 0, 0) is the origin. Let $$S\left( {{1 \over 2},{1 \over 2},{1 \over 2}} \right)$$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If p = SP, q = SQ, r = SR and t = ST, then the value of |(p $$ \times $$ q) $$ \times $$ (r $$ \times $$ t)| is ............
JEE Advanced 2018 Paper 2 Offline
4
If the distance between the plane $$Ax-2y+z=d$$ and the plane containing the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over 4}$$ and $${{x - 2} \over 3} = {{y - 3} \over 4} = {{z - 4} \over 5}\,$$ is $$\sqrt 6 \,\,,$$ then $$\left| d \right|$$ is ___________.
IIT-JEE 2010 Paper 1 Offline

Subjective

1
Consider the following linear equations $$ax+by+cz=0;$$ $$\,\,\,$$ $$bx+cy+az=0;$$ $$\,\,\,$$ $$cx+ay+bz=0$$

Match the conditions/expressions in Column $$I$$ with statements in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS.$$

$$\,\,\,$$ Column $$I$$
(A)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$
(B)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(C)$$\,\,a + b + c \ne 0$$ and $${a^2} + {b^2} + {c^2} \ne ab + bc + ca$$
(D)$$\,\,$$ $$a + b + c = 0$$ and $${a^2} + {b^2} + {c^2} = ab + bc + ca$$

$$\,\,\,$$ Column $$II$$
(p)$$\,\,\,$$ the equations represents planes meeting only at asingle point
(q)$$\,\,\,$$ the equations represents the line $$x=y=z.$$
(r)$$\,\,\,$$ the equations represent identical planes.
(s) $$\,\,\,$$ the equations represents the whole of the three dimensional space.

IIT-JEE 2007
2
Find the equation of the plane containing the line $$2x-y+z-3=0,3x+y+z=5$$ and at a distance of $${1 \over {\sqrt 6 }}$$ from the point $$(2, 1, -1).$$
IIT-JEE 2005
3
Find the equation of plane passing through $$(1, 1, 1)$$ & parallel to the lines $${L_1},{L_2}$$ having direction ratios $$(1,0,-1),(1,-1,0).$$ Find the volume of tetrahedron formed by origin and the points where these planes intersect the coordinate axes.
IIT-JEE 2004
4
$${P_1}$$ and $${P_2}$$ are planes passing through origin. $${L_1}$$ and $${L_2}$$ are two line on $${P_1}$$ and $${P_2}$$ respectively such that their intersection is origin. Show that there exists points $$A, B, C,$$ whose permutation $$A',B',C'$$ can be chosen such that (i) $$A$$ is on $${L_1},$$ $$B$$ on $${P_1}$$ but not on $${L_1}$$ and $$C$$ not on $${P_1}$$ (ii) $$A'$$ is on $${L_2},$$ $$B'$$ on $${P_2}$$ but not on $${L_2}$$ and $$C'$$ not on $${P_2}$$
IIT-JEE 2004
5
A parallelopiped $$'S'$$ has base points $$A, B, C$$ and $$D$$ and upper face points $$A',$$ $$B',$$ $$C'$$ and $$D'.$$ This parallelopiped is compressed by upper face $$A'B'C'D'$$ to form a new parallelopiped $$'T'$$ having upper face points $$A'',B'',C''$$ and $$D''.$$ Volume of parallelopiped $$T$$ is $$90$$ percent of the volume of parallelopiped $$S.$$ Prove that the locus of $$'A''',$$ is a plane.
IIT-JEE 2004
6
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
IIT-JEE 2003
7
The position vectors of the vertices $$A, B$$ and $$C$$ of a tetrahedron $$ABCD$$ are $$\widehat i + \widehat j + \widehat k,\,\widehat i$$ and $$3\widehat i\,,$$ respectively. The altitude from vertex $$D$$ to the opposite face $$ABC$$ meets the median line through $$A$$ of the triangle $$ABC$$ at a point $$E.$$ If the length of the side $$AD$$ is $$4$$ and the volume of the tetrahedron is $${{2\sqrt 2 } \over 3},$$ find the position vector of the point $$E$$ for all its possible positions.
IIT-JEE 1996
8
A vector $$\overrightarrow A $$ has components $${A_1},{A_2},{A_3}$$ in a right -handed rectangular Cartesian coordinate system $$oxyz.$$ The coordinate system is rotated about the $$x$$-axis through an angle $${\pi \over 2}.$$ Find the components of $$A$$ in the new coordinate system in terms of $${A_1},{A_2},{A_3}.$$
IIT-JEE 1983
9
From a point $$O$$ inside a triangle $$ABC,$$ perpendiculars $$OD$$, $$OE, OF$$ are drawn to the sides $$BC, CA, AB$$ respectively. Prove that the perpendiculars from $$A, B, C$$ to the sides $$EF, FD, DE$$ are concurrent.
IIT-JEE 1978

Fill in the Blanks

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12